Quantum and quantum-like machine learning: a note on differences and similarities

In the past few decades, researchers have extensively investigated the applications of quantum computation and quantum information to machine learning with remarkable results. This, in turn, has led to the emergence of quantum machine learning as a separate discipline, whose main goal is to transform standard machine learning algorithms into quantum algorithms which can be implemented on quantum computers. One further research programme has involved using quantum information to create new quantum-like algorithms for classical computers (Sergioli et al. in Int J Theor Phys 56(12):3880–3888, 2017; PLoS ONE 14:e0216224, 2019. https://doi.org/10.1371/journal.pone.0216224 ; Int J Quantum Inf 16(8):1840011, 2018a; Soft Comput 22(3):691–705, 2018b). This brief survey summarises and compares both approaches and also outlines the main motivations behind them.

[1]  János A. Bergou,et al.  Discrimination of quantum states , 2010 .

[2]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[3]  Peter Wittek,et al.  Quantum Machine Learning: What Quantum Computing Means to Data Mining , 2014 .

[4]  S. Lloyd,et al.  Quantum algorithms for supervised and unsupervised machine learning , 2013, 1307.0411.

[5]  David G. Stork,et al.  Pattern Classification , 1973 .

[6]  Roman V. Yampolskiy,et al.  Quantum Metalanguage and The New Cognitive Synthesis , 2018, NeuroQuantology.

[7]  G. D’Ariano,et al.  Optimal quantum learning of a unitary transformation , 2009, 0903.0543.

[8]  H. Yuen Quantum detection and estimation theory , 1978, Proceedings of the IEEE.

[9]  Maria Schuld,et al.  Supervised Learning with Quantum Computers , 2018 .

[10]  Madhav J. Nigam,et al.  Applications of quantum inspired computational intelligence: a survey , 2014, Artificial Intelligence Review.

[11]  R. Feynman Simulating physics with computers , 1999 .

[12]  A. Hayashi,et al.  Quantum pure-state identification , 2005, quant-ph/0507237.

[13]  Roger G. Melko,et al.  Machine learning phases of matter , 2016, Nature Physics.

[14]  Jieci Wang,et al.  Quantum decoherence in noninertial frames , 2010, 1005.2865.

[15]  Francesco Petruccione,et al.  Learning with Quantum Models , 2018 .

[16]  Anthony Chefles Quantum state discrimination , 2000 .

[17]  Davide Castelvecchi,et al.  IBM's quantum cloud computer goes commercial , 2017, Nature.

[18]  K. Audenaert,et al.  Discriminating States: the quantum Chernoff bound. , 2006, Physical review letters.

[19]  Songfeng Lu,et al.  Quantum decision tree classifier , 2014, Quantum Inf. Process..

[20]  R. Giuntini,et al.  A Quantum-inspired Version of the Classification Problem , 2017 .

[21]  Enrica Santucci,et al.  Quantum Minimum Distance Classifier , 2017, Entropy.

[22]  Maria Schuld,et al.  Implementing a distance-based classifier with a quantum interference circuit , 2017, 1703.10793.

[23]  Roberto Giuntini,et al.  A new quantum approach to binary classification , 2019, PloS one.

[24]  Ashish Kapoor,et al.  Quantum Nearest-Neighbor Algorithms for Machine Learning , 2014, 1401.2142.

[25]  Martin Hilbert,et al.  The World’s Technological Capacity to Store, Communicate, and Compute Information , 2011, Science.

[26]  Roberto Giuntini,et al.  Quantum-inspired minimum distance classification in a biomedical context , 2018, International Journal of Quantum Information.

[27]  Martin Hilbert,et al.  Info Capacity| How to Measure the World’s Technological Capacity to Communicate, Store and Compute Information? Part I: Results and Scope , 2012 .

[28]  Hector Freytes,et al.  Pattern Recognition in Non-Kolmogorovian Structures , 2016, 1609.06340.

[29]  Jaroslaw Adam Miszczak,et al.  A quantum-inspired version of the nearest mean classifier , 2017, Soft Comput..

[30]  Gilles Brassard,et al.  Machine Learning in a Quantum World , 2006, Canadian AI.

[31]  Daowen Qiu Minimum-error discrimination between mixed quantum states , 2007, 0707.3970.

[32]  Carlo A. Trugenberger,et al.  Quantum Pattern Recognition , 2002, Quantum Inf. Process..

[33]  G. Sergioli,et al.  Classification Problem in a Quantum Framework , 2017, 1704.06475.

[34]  Maria Schuld,et al.  The quest for a Quantum Neural Network , 2014, Quantum Information Processing.

[35]  Masahide Sasaki,et al.  Quantum learning and universal quantum matching machine , 2002 .

[36]  F. Petruccione,et al.  An introduction to quantum machine learning , 2014, Contemporary Physics.

[37]  Anmer Daskin Quantum Principal Component Analysis , 2015 .

[38]  Hector Freytes,et al.  Fuzzy Approach for Toffoli Gate in Quantum Computation With Mixed States , 2014 .

[39]  Scott Aaronson,et al.  The learnability of quantum states , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[40]  Roberto Giuntini,et al.  Quantum information, cognition, and music , 2015, Front. Psychol..

[41]  Sébastien Gambs,et al.  Quantum classification , 2008, ArXiv.