Learning to Learn a Cold-start Sequential Recommender

XIAOWEN HUANG, JITAO SANG, and JIAN YU, School of Computer and Information Technology & Beijing Key Lab of Traffic Data Analysis and Mining, Beijing Jiaotong University, China CHANGSHENG XU∗, National Lab of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China, School of Artificial Intelligence, University of Chinese Academy of Sciences, China, and Peng Cheng Laboratory, China

[1]  Ee-Peng Lim,et al.  A Survey of Recommender Systems in Twitter , 2012, SocInfo.

[2]  Changsheng Xu,et al.  CSAN: Contextual Self-Attention Network for User Sequential Recommendation , 2018, ACM Multimedia.

[3]  George Karypis,et al.  FISM: factored item similarity models for top-N recommender systems , 2013, KDD.

[4]  Zoubin Ghahramani,et al.  Cold-start Active Learning with Robust Ordinal Matrix Factorization , 2014, ICML.

[5]  Hugo Larochelle,et al.  A Meta-Learning Perspective on Cold-Start Recommendations for Items , 2017, NIPS.

[6]  Greg Linden,et al.  Amazon . com Recommendations Item-to-Item Collaborative Filtering , 2001 .

[7]  Ricardo Vilalta,et al.  A Perspective View and Survey of Meta-Learning , 2002, Artificial Intelligence Review.

[8]  Pasquale Lops,et al.  Content-based Recommender Systems: State of the Art and Trends , 2011, Recommender Systems Handbook.

[9]  Fei Chen,et al.  MetaSelector: Meta-Learning for Recommendation with User-Level Adaptive Model Selection , 2020, WWW.

[10]  Hao Tian,et al.  Learning to Recommend via Meta Parameter Partition , 2019, ArXiv.

[11]  Homanga Bharadhwaj,et al.  Meta-Learning for User Cold-Start Recommendation , 2019, 2019 International Joint Conference on Neural Networks (IJCNN).

[12]  Richard S. Zemel,et al.  Prototypical Networks for Few-shot Learning , 2017, NIPS.

[13]  Qing He,et al.  Warm Up Cold-start Advertisements: Improving CTR Predictions via Learning to Learn ID Embeddings , 2019, SIGIR.

[14]  Anton van den Hengel,et al.  Image-Based Recommendations on Styles and Substitutes , 2015, SIGIR.

[15]  Meng Wang,et al.  SocialGCN: An Efficient Graph Convolutional Network based Model for Social Recommendation , 2018, ArXiv.

[16]  Hyunsouk Cho,et al.  MeLU: Meta-Learned User Preference Estimator for Cold-Start Recommendation , 2019, KDD.

[17]  Jitao Sang,et al.  Explainable Interaction-driven User Modeling over Knowledge Graph for Sequential Recommendation , 2019, ACM Multimedia.

[18]  Hugo Larochelle,et al.  Optimization as a Model for Few-Shot Learning , 2016, ICLR.

[19]  Hang Li,et al.  Meta-SGD: Learning to Learn Quickly for Few Shot Learning , 2017, ArXiv.

[20]  David A. McAllester,et al.  Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence , 2009, UAI 2009.

[21]  Jure Leskovec,et al.  Graph Convolutional Neural Networks for Web-Scale Recommender Systems , 2018, KDD.

[22]  J. Schulman,et al.  Reptile: a Scalable Metalearning Algorithm , 2018 .

[23]  Xiangnan He,et al.  How to Retrain Recommender System?: A Sequential Meta-Learning Method , 2020, SIGIR.

[24]  Tat-Seng Chua,et al.  Neural Graph Collaborative Filtering , 2019, SIGIR.

[25]  Wei Wang,et al.  Fast Adaptation for Cold-start Collaborative Filtering with Meta-learning , 2020, 2020 IEEE International Conference on Data Mining (ICDM).

[26]  Tat-Seng Chua,et al.  Neural Collaborative Filtering , 2017, WWW.

[27]  Lars Schmidt-Thieme,et al.  BPR: Bayesian Personalized Ranking from Implicit Feedback , 2009, UAI.

[28]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[29]  Feng Yu,et al.  A Dynamic Recurrent Model for Next Basket Recommendation , 2016, SIGIR.

[30]  Oriol Vinyals,et al.  Matching Networks for One Shot Learning , 2016, NIPS.

[31]  Xiaowei Wang,et al.  Sequential Scenario-Specific Meta Learner for Online Recommendation , 2019, KDD.

[32]  Sergey Levine,et al.  Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks , 2017, ICML.

[33]  Lars Schmidt-Thieme,et al.  Factorizing personalized Markov chains for next-basket recommendation , 2010, WWW '10.

[34]  Yizhou Sun,et al.  Personalized entity recommendation: a heterogeneous information network approach , 2014, WSDM.

[35]  Tie-Yan Liu,et al.  Sequential Click Prediction for Sponsored Search with Recurrent Neural Networks , 2014, AAAI.

[36]  Paul Covington,et al.  Deep Neural Networks for YouTube Recommendations , 2016, RecSys.

[37]  Alexandros Karatzoglou,et al.  Session-based Recommendations with Recurrent Neural Networks , 2015, ICLR.

[38]  Alexandros Karatzoglou,et al.  Parallel Recurrent Neural Network Architectures for Feature-rich Session-based Recommendations , 2016, RecSys.

[39]  Alessandro Bozzon,et al.  Recurrent knowledge graph embedding for effective recommendation , 2018, RecSys.

[40]  Minyi Guo,et al.  DKN: Deep Knowledge-Aware Network for News Recommendation , 2018, WWW.

[41]  Yu Zhang,et al.  CoNet: Collaborative Cross Networks for Cross-Domain Recommendation , 2018, UMCit@KDD.

[42]  Hong Yu,et al.  Meta Networks , 2017, ICML.

[43]  Xiaolong Jin,et al.  Cross-Domain Recommendation: An Embedding and Mapping Approach , 2017, IJCAI.

[44]  Dharmveer Singh Rajpoot,et al.  Resolving Cold Start problem in recommendation system using demographic approach , 2016, 2016 International Conference on Signal Processing and Communication (ICSC).

[45]  Deng Cai,et al.  Addressing the Item Cold-Start Problem by Attribute-Driven Active Learning , 2018, IEEE Transactions on Knowledge and Data Engineering.

[46]  Chang Zhou,et al.  ATRank: An Attention-Based User Behavior Modeling Framework for Recommendation , 2017, AAAI.

[47]  Alexandros Karatzoglou,et al.  Personalizing Session-based Recommendations with Hierarchical Recurrent Neural Networks , 2017, RecSys.