Variational AutoEncoders-LSTM based fault detection of time-dependent high dimensional processes

[1]  D. Marcondes Filho,et al.  Fault detection and diagnosis of batch process dynamics using ARMA-based control charts , 2022, Journal of Process Control.

[2]  A. Maged,et al.  Recognition of abnormal patterns in industrial processes with variable window size via convolutional neural networks and AdaBoost , 2022, Journal of Intelligent Manufacturing.

[3]  Adriano Mendonça Souza,et al.  An effective approach to detect the source(s) of out-of-control signals in productive processes by vector error correction (VEC) residual and Hotelling's T2 decomposition techniques , 2022, Expert Syst. Appl..

[4]  Jianye Wang,et al.  Adaptive residual CNN-based fault detection and diagnosis system of small modular reactors , 2021, Appl. Soft Comput..

[5]  Xue-feng Yan,et al.  Quality-relevant fault detection based on adversarial learning and distinguished contribution of latent variables to quality , 2021, Journal of Manufacturing Systems.

[6]  Jianbo Yu,et al.  One-dimensional residual convolutional auto-encoder for fault detection in complex industrial processes , 2021, Int. J. Prod. Res..

[7]  Dedy Dwi Prastyo,et al.  PCA-based Hotelling's T2 chart with fast minimum covariance determinant (FMCD) estimator and kernel density estimation (KDE) for network intrusion detection , 2021, Comput. Ind. Eng..

[8]  Omar Bataineh,et al.  A Gaussian process approach for monitoring autocorrelated batch production processes , 2021, Qual. Reliab. Eng. Int..

[9]  S. Chakraborti,et al.  Phase I monitoring of individual normal data: Design and implementation , 2021, Quality Engineering.

[10]  Fugee Tsung,et al.  Change detection in parametric multivariate dynamic data streams using the ARMAX-GARCH model , 2021, Journal of Quality Technology.

[11]  M. Kulahci,et al.  An investigation of the utilisation of different data sources in manufacturing with application in injection moulding , 2021, Int. J. Prod. Res..

[12]  Kuo-Hao Chang,et al.  Big data analytics energy-saving strategies for air compressors in the semiconductor industry – an empirical study , 2021, Int. J. Prod. Res..

[13]  Xiaofeng Yuan,et al.  Supervised and semi-supervised probabilistic learning with deep neural networks for concurrent process-quality monitoring , 2020, Neural Networks.

[14]  Kai Wang,et al.  Bayesian cross-product quality control via transfer learning , 2020, Int. J. Prod. Res..

[15]  Yajun Mei,et al.  Nonparametric monitoring of multivariate data via KNN learning , 2020, Int. J. Prod. Res..

[16]  Yan Xiao,et al.  On autoregressive model selection for the exponentially weighted moving average control chart of residuals in monitoring the mean of autocorrelated processes , 2020, Qual. Reliab. Eng. Int..

[17]  Li Xue,et al.  A nonparametric CUSUM chart for monitoring multivariate serially correlated processes , 2020, Journal of Quality Technology.

[18]  Shijin Wang,et al.  Fault detection and recognition of multivariate process based on feature learning of one-dimensional convolutional neural network and stacked denoised autoencoder , 2020, Int. J. Prod. Res..

[19]  Hao Yan,et al.  Toward a better monitoring statistic for profile monitoring via variational autoencoders , 2019, Journal of Quality Technology.

[20]  Shumei Chen,et al.  Deep recurrent neural network‐based residual control chart for autocorrelated processes , 2019, Qual. Reliab. Eng. Int..

[21]  Seoung Bum Kim,et al.  Process monitoring using variational autoencoder for high-dimensional nonlinear processes , 2019, Eng. Appl. Artif. Intell..

[22]  Diederik P. Kingma,et al.  An Introduction to Variational Autoencoders , 2019, Found. Trends Mach. Learn..

[23]  Zhiqiang Ge,et al.  Review on data-driven modeling and monitoring for plant-wide industrial processes , 2017 .

[24]  S. Bersimis,et al.  Phase II control charts for autocorrelated processes , 2016 .

[25]  Murat Kulahci,et al.  The Effect of Autocorrelation on the Hotelling T2 Control Chart , 2015, Qual. Reliab. Eng. Int..

[26]  Antonio Fernando Branco Costa,et al.  The effect of the autocorrelation on the performance of the T2 chart , 2015, Eur. J. Oper. Res..

[27]  Xuan Huang,et al.  Model‐based Multivariate Monitoring Charts for Autocorrelated Processes , 2014, Qual. Reliab. Eng. Int..

[28]  Seoung Bum Kim,et al.  Principal component analysis-based control charts for multivariate nonnormal distributions , 2013, Expert Syst. Appl..

[29]  Måns Thulin,et al.  A high-dimensional two-sample test for the mean using random subspaces , 2013, Comput. Stat. Data Anal..

[30]  Furong Gao,et al.  Review of Recent Research on Data-Based Process Monitoring , 2013 .

[31]  Daniel Aguado,et al.  Multivariate statistical monitoring of continuous wastewater treatment plants , 2008, Eng. Appl. Artif. Intell..

[32]  Fugee Tsung,et al.  A kernel-distance-based multivariate control chart using support vector methods , 2003 .

[33]  S. Hochreiter,et al.  Long Short-Term Memory , 1997, Neural Computation.

[34]  Yiqi Liu,et al.  A Supervised Bidirectional Long Short-Term Memory Network for Data-Driven Dynamic Soft Sensor Modeling , 2022, IEEE Transactions on Instrumentation and Measurement.

[35]  Michael Graf,et al.  VASP: An autoencoder-based approach for multivariate anomaly detection and robust time series prediction with application in motorsport , 2021, Eng. Appl. Artif. Intell..

[36]  Genie Baker,et al.  Time Series Analysis , 2006 .