Rows of ATP synthase dimers in native mitochondrial inner membranes.

The ATP synthase is a nanometric rotary machine that uses a transmembrane electrochemical gradient to form ATP. The structures of most components of the ATP synthase are known, and their organization has been elucidated. However, the supramolecular assembly of ATP synthases in biological membranes remains unknown. Here we show with submolecular resolution the organization of ATP synthases in the yeast mitochondrial inner membranes. The atomic force microscopy images we have obtained show how these molecules form dimers with characteristic 15 nm distance between the axes of their rotors through stereospecific interactions of the membrane embedded portions of their stators. A different interaction surface is responsible for the formation of rows of dimers. Such an organization elucidates the role of the ATP synthase in mitochondrial morphology. Some dimers have a different morphology with 10 nm stalk-to-stalk distance, in line with ATP synthases that are accessible to IF1 inhibition. Rotation torque compensation within ATP synthase dimers stabilizes the ATP synthase structure, in particular the stator-rotor interaction.

[1]  R. Henderson,et al.  Structure of the mitochondrial ATP synthase by electron cryomicroscopy , 2003, The EMBO journal.

[2]  H. Stahlberg,et al.  Bacterial Na+‐ATP synthase has an undecameric rotor , 2001, EMBO reports.

[3]  Kazuhiko Kinosita,et al.  F1-ATPase Is a Highly Efficient Molecular Motor that Rotates with Discrete 120° Steps , 1998, Cell.

[4]  M. Radermacher,et al.  Subunit composition of mitochondrial complex I from the yeast Yarrowia lipolytica. , 2004, Biochimica et biophysica acta.

[5]  Eva Pebay-Peyroula,et al.  Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside , 2003, Nature.

[6]  S. Iwata,et al.  Architecture of Succinate Dehydrogenase and Reactive Oxygen Species Generation , 2003, Science.

[7]  Andrew G. W. Leslie,et al.  The structure of the central stalk in bovine F1-ATPase at 2.4 Å resolution , 2000, Nature Structural Biology.

[8]  Kazuhiko Kinosita,et al.  ATP-driven stepwise rotation of FoF1-ATP synthase. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Z. Rao,et al.  Crystal Structure of Mitochondrial Respiratory Membrane Protein Complex II , 2005, Cell.

[10]  A. Leslie,et al.  The structure of bovine F1-ATPase in complex with its regulatory protein IF1 , 2003, Nature Structural Biology.

[11]  A. Reichert,et al.  Mitochondrial Membrane Potential Is Dependent on the Oligomeric State of F1F0-ATP Synthase Supracomplexes* , 2006, Journal of Biological Chemistry.

[12]  A G Leslie,et al.  Molecular architecture of the rotary motor in ATP synthase. , 1999, Science.

[13]  N. Pfanner,et al.  Versatility of the mitochondrial protein import machinery , 2001, Nature Reviews Molecular Cell Biology.

[14]  S. Lowen The Biophysical Journal , 1960, Nature.

[15]  P. Boyer The ATP synthase--a splendid molecular machine. , 1997, Annual review of biochemistry.

[16]  T. A. Link,et al.  Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. , 1998, Science.

[17]  D. Müller,et al.  Fourteen protomers compose the oligomer III of the proton-rotor in spinach chloroplast ATP synthase. , 2003, Journal of molecular biology.

[18]  Thomas Boudier,et al.  From high-resolution AFM topographs to atomic models of supramolecular assemblies. , 2007, Journal of structural biology.

[19]  K. Pfeiffer,et al.  Yeast mitochondrial F1F0‐ATP synthase exists as a dimer: identification of three dimer‐specific subunits , 1998, The EMBO journal.

[20]  N. Dencher,et al.  Dimeric H+-ATP synthase in the chloroplast of Chlamydomonas reinhardtii. , 2004, Biochimica et biophysica acta.

[21]  I. Arechaga,et al.  Dimerization of Bovine F1-ATPase by Binding the Inhibitor Protein, IF1 * , 2000, The Journal of Biological Chemistry.

[22]  A S Frangakis,et al.  Cryo-electron tomography of neurospora mitochondria. , 2000, Journal of structural biology.

[23]  Patrick Polzer,et al.  Structure of the Rotor Ring of F-Type Na+-ATPase from Ilyobacter tartaricus , 2005, Science.

[24]  A. Leslie,et al.  On the structure of the stator of the mitochondrial ATP synthase , 2006, The EMBO journal.

[25]  Philip Hinchliffe,et al.  Structure of the Hydrophilic Domain of Respiratory Complex I from Thermus thermophilus , 2006, Science.

[26]  S. Wilkens,et al.  Structure of dimeric mitochondrial ATP synthase: novel F0 bridging features and the structural basis of mitochondrial cristae biogenesis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[27]  A G Leslie,et al.  The rotary mechanism of ATP synthase. , 2000, Current opinion in structural biology.

[28]  A. Engel,et al.  Surface tongue-and-groove contours on lens MIP facilitate cell-to-cell adherence. , 2000, Journal of molecular biology.

[29]  Kazuhiko Kinosita,et al.  Direct observation of the rotation of F1-ATPase , 1997, Nature.

[30]  J. di Rago,et al.  The ATP synthase is involved in generating mitochondrial cristae morphology , 2002, The EMBO journal.

[31]  Henning Stahlberg,et al.  Structural biology: Proton-powered turbine of a plant motor , 2000, Nature.

[32]  Simon Scheuring,et al.  Chromatic Adaptation of Photosynthetic Membranes , 2005, Science.

[33]  R. Allen,et al.  An investigation of mitochondrial inner membranes by rapid-freeze deep- etch techniques , 1989, The Journal of cell biology.

[34]  Simon Scheuring,et al.  Watching the photosynthetic apparatus in native membranes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[35]  T. Tomizaki,et al.  The Whole Structure of the 13-Subunit Oxidized Cytochrome c Oxidase at 2.8 Å , 1996, Science.

[36]  J Koepke,et al.  Structure at 2.3 A resolution of the cytochrome bc(1) complex from the yeast Saccharomyces cerevisiae co-crystallized with an antibody Fv fragment. , 2000, Structure.

[37]  Thomas Walz,et al.  The supramolecular architecture of junctional microdomains in native lens membranes , 2007, EMBO reports.

[38]  C. Koehler New developments in mitochondrial assembly. , 2004, Annual review of cell and developmental biology.

[39]  Ronald A Milligan,et al.  Three-dimensional reconstruction of bovine brain V-ATPase by cryo-electron microscopy and single particle analysis. , 2007, Journal of structural biology.

[40]  A. Engel,et al.  Atomic-force microscopy: Rhodopsin dimers in native disc membranes , 2003, Nature.

[41]  Jan Pieter Abrahams,et al.  Structure at 2.8 Â resolution of F1-ATPase from bovine heart mitochondria , 1994, Nature.

[42]  M. Bauer,et al.  Protein translocation into mitochondria: the role of TIM complexes. , 2000, Trends in cell biology.

[43]  J Deisenhofer,et al.  Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. , 1997, Science.

[44]  Gerd Binnig,et al.  Atomic Resolution with Atomic Force Microscope , 1987 .

[45]  A. Leslie,et al.  The structure of bovine IF1, the regulatory subunit of mitochondrial F‐ATPase , 2001, The EMBO journal.

[46]  G. Domańska,et al.  Conserved mechanism of Oxa1 insertion into the mitochondrial inner membrane. , 2005, Journal of molecular biology.

[47]  N Grigorieff,et al.  Three-dimensional structure of bovine NADH:ubiquinone oxidoreductase (complex I) at 22 A in ice. , 1998, Journal of molecular biology.

[48]  J. Happel,et al.  Low Reynolds number hydrodynamics , 1965 .

[49]  So Iwata,et al.  Molecular Basis of Proton Motive Force Generation: Structure of Formate Dehydrogenase-N , 2002, Science.

[50]  C. Mannella Structure of the outer mitochondrial membrane: ordered arrays of porelike subunits in outer-membrane fractions from neurospora crassa mitochondria , 1982, The Journal of cell biology.