Leibniz versus Ishiguro: Closing a Quarter Century of Syncategoremania
暂无分享,去创建一个
Piotr Blaszczyk | Vladimir Kanovei | Mikhail G. Katz | Karin U. Katz | David Sherry | V. Kanovei | David Sherry | David M. Schaps | M. Katz | Tiziana Bascelli | Piotr Błaszczyk | D. Schaps | Tiziana Bascelli
[1] H. Jerome Keisler,et al. On the strength of nonstandard analysis , 1986, Journal of Symbolic Logic.
[2] W. Luxemburg. Non-Standard Analysis , 1977 .
[3] T. Tho. EQUIVOCATION IN THE FOUNDATIONS OF LEIBNIZ’S INFINITESIMAL FICTIONS , 2012 .
[4] Carl B. Boyer,et al. The Concepts of the Calculus , 1940 .
[5] Mikhail G. Katz,et al. Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes from Berkeley to Russell and Beyond , 2012, 1205.0174.
[6] Mikhail G. Katz,et al. Infinitesimals, Imaginaries, Ideals, and Fictions , 2012 .
[7] Don't take me half the way: On Berkeley on mathematical reasoning , 1993 .
[8] P. A. Macmahon,et al. A Treatise on Algebra , 2010, Nature.
[9] Daniel J. Cook,et al. Leibniz's Philosophy of Logic and Language. , 1974 .
[10] Abraham Robinson. Concerning Progress In The Philosophy Of Mathematics , 1975 .
[11] S. Unguru. Fermat revivified, explained, and regained , 1977 .
[12] M. Kulstad,et al. The Philosophy of the Young Leibniz , 2009 .
[13] Henk J. M. Bos,et al. Differentials, higher-order differentials and the derivative in the Leibnizian calculus , 1974 .
[14] Patrick Reeder. Internal Set Theory and Euler's Introductio in Analysin Infinitorum , 2013 .
[15] Alexandre Borovik,et al. Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus , 2011, 1108.2885.
[16] Eberhard Knobloch,et al. Leibniz's Rigorous Foundation Of Infinitesimal Geometry By Means Of Riemannian Sums , 2002, Synthese.
[17] Paul Benacerraf,et al. What the numbers could not be , 1983 .
[18] Ian Mueller,et al. Philosophy of mathematics and deductive structure in Euclid's Elements , 1981 .
[19] A. Cauchy. Cours d'analyse de l'École royale polytechnique , 1821 .
[20] F. B.,et al. The Concepts of the Calculus , 1939, Nature.
[21] B. Russell,et al. Introduction to Mathematical Philosophy , 1920, The Mathematical Gazette.
[22] J. M. Child. The Early Mathematical Manuscripts Of Leibniz , 1921, The Mathematical Gazette.
[23] Karin U. Katz,et al. Euler’s Lute and Edwards’s Oud , 2015, 1506.02586.
[24] Emanuele Bottazzi,et al. Fermat, Leibniz, Euler, and the gang: The true history of the concepts of limit and shadow , 2014, 1407.0233.
[25] D. Jesseph,et al. Archimedes, Infinitesimals and the Law of Continuity: On Leibniz’s Fictionalism , 2008 .
[26] D. Jesseph. Truth in Fiction: Origins and Consequences of Leibniz's Doctrine of Infinitesimal Magnitudes , 2006 .
[27] G. Leibniz,et al. The Early Mathematical Manuscripts of Leibniz: Translated from the Latin Texts Published by Carl Immanuel Gerhardt with Critical and Historical Notes , 2012 .
[28] D. Jesseph,et al. Leery Bedfellows: Newton and Leibniz on the Status of Infinitesimals , 2008 .
[29] J. Tandy. Infinitesimal: How a Dangerous Mathematical Theory Shaped the Modern World , 2015 .
[30] David Sherry,et al. The wake of Berkeley's analyst: Rigor mathematicae? , 1987 .
[31] Douglas M. Jesseph,et al. Leibniz on The Elimination of Infinitesimals , 2015 .
[32] Mikhail G. Katz,et al. EDWARD NELSON (1932–2014) , 2015, The Review of Symbolic Logic.
[33] Richard T. W. Arthur. Leibniz’s syncategorematic infinitesimals , 2013 .
[34] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[35] D. Rabouin. Leibniz’s Rigorous Foundations of the Method of Indivisibles , 2015 .
[36] Vladimir Kanovei,et al. Proofs and Retributions, Or: Why Sarah Can’t Take Limits , 2015 .
[37] Piotr Blaszczyk,et al. Is mathematical history written by the victors , 2013, 1306.5973.
[38] Giovanni Ferraro,et al. The rise and development of the theory of series up to the early 1820s , 2007 .
[39] A. Alexander. Infinitesimal: How a Dangerous Mathematical Theory Shaped the Modern World , 2014 .
[40] Hide Ishiguro,et al. Leibniz's Philosophy of Logic and Language , 1972 .
[41] Mikhail G. Katz,et al. Almost Equal: the Method of Adequality from Diophantus to Fermat and Beyond , 2012, Perspectives on Science.