Seiberg-Witten Invariants and Superconducting Vortices
暂无分享,去创建一个
[1] Chris Gerig. Seiberg–Witten and Gromov invariants for self-dual harmonic 2–forms , 2018, Geometry & Topology.
[2] Chris Gerig. Taming the pseudoholomorphic beasts in R × ( S 1 × S 2 ) , 2018 .
[3] S. Gukov. Trisecting non-Lagrangian theories , 2017, 1707.01515.
[4] D. Gaiotto. Preprint Typeset in Jhep Style -hyper Version N = 2 Dualities , 2022 .
[5] C. Vafa,et al. Classification of Complete N = 2 Supersymmetric Theories in 4 Dimensions , 2011, 1103.5832.
[6] G. ’t Hooft,et al. Computation of the quantum effects due to a four-dimensional pseudoparticle , 2011 .
[7] E. Witten. From superconductors and four-manifolds to weak interactions , 2007 .
[8] D. joyce. Riemannian Holonomy Groups And Calibrated Geometry , 2007 .
[9] C. Taubes. A proof of a theorem of Luttinger and Simpson about the number of vanishing circles of a near-symplectic form on a 4-dimensional manifold , 2006 .
[10] C. Taubes,et al. Seiberg-Witten and Gromov invariants for symplectic 4-manifolds , 2005 .
[11] C. Vafa,et al. Khovanov-Rozansky Homology and Topological Strings , 2004, hep-th/0412243.
[12] C. Vafa,et al. Topological M-theory as unification of form theories of gravity , 2004, hep-th/0411073.
[13] K. Honda. Transversality Theorems for Harmonic Forms , 2004 .
[14] C. Taubes. Seiberg-Witten invariants, self-dual harmonic 2-forms and Hofer-Wysocki-Zehnder formalism , 2002 .
[15] J. Morgan. Seiberg-Witten invariants , 2001 .
[16] M. Mariño. Topological quantum field theory and four manifolds , 2000, hep-th/0008100.
[17] Dominic Joyce,et al. Compact Manifolds with Special Holonomy , 2000 .
[18] R. Bryant. Calibrated Embeddings in the Special Lagrangian and Coassociative Cases , 1999, math/9912246.
[19] H. Ooguri,et al. Knot Invariants and Topological Strings , 1999, hep-th/9912123.
[20] C. Taubes. Seiberg{Witten Invariants and Pseudo-Holomorphic Subvarieties for Self-Dual, Harmonic 2{Forms , 1999, math/9907199.
[21] C. Taubes. A compendium of pseudoholomorphic beasts in R × ( S 1 × S 2 ) , 1999 .
[22] R. C. Mclean. Deformations of calibrated submanifolds , 1998 .
[23] W. Nahm. On electric-magnetic duality , 1997 .
[24] E. Witten,et al. Integration over the u-plane in Donaldson theory , 1997, hep-th/9709193.
[25] M. Hutchings,et al. An introduction to the Seiberg-Witten equations on symplectic manifolds , 1997 .
[26] C. Lebrun,et al. Yamabe Constants and the Perturbed Seiberg-Witten Equations , 1996, dg-ga/9605009.
[27] C. Vafa,et al. Self-dual strings and N = 2 supersymmetric field theory , 1996, hep-th/9604034.
[28] C. Vafa,et al. D-branes and topological field theories , 1995, hep-th/9511222.
[29] M. Douglas,et al. New Phenomena in SU(3) Supersymmetric Gauge Theory , 1995, hep-th/9505062.
[30] C. Taubes. The Seiberg-Witten and Gromov invariants , 1995 .
[31] E. Witten. Monopoles and four-manifolds , 1994, hep-th/9411102.
[32] E. Witten,et al. Electric - magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory , 1994, hep-th/9407087.
[33] C. Taubes. THE SEIBERG-WITTEN INVARIANTS AND SYMPLECTIC FORMS , 1994 .
[34] E. Witten. Chern-Simons gauge theory as a string theory , 1992, hep-th/9207094.
[35] Claude Viterbo,et al. An introduction to symplectic topology , 1991 .
[36] Edward Witten,et al. Quantum field theory and the Jones polynomial , 1989 .
[37] Edward Witten,et al. Topological quantum field theory , 1988 .
[38] M. Gromov. Pseudo holomorphic curves in symplectic manifolds , 1985 .