Molecular understanding of interphase formation via operando polymerization on lithium metal anode

[1]  Y. Ye,et al.  Capturing the swelling of solid-electrolyte interphase in lithium metal batteries , 2022, Science.

[2]  P. He,et al.  A high efficiency electrolyte enables robust inorganic-organic solid electrolyte interfaces for fast Li metal anode. , 2021, Science bulletin.

[3]  Bing Han,et al.  Poor Stability of Li2CO3 in the Solid Electrolyte Interphase of a Lithium‐Metal Anode Revealed by Cryo‐Electron Microscopy , 2021, Advanced materials.

[4]  W. Goddard,et al.  Pathway of in situ Polymerization of 1,3-dioxolane in LiPF6 Electrolyte on Li Metal Anode , 2021 .

[5]  Yi Cui,et al.  Corrosion of lithium metal anodes during calendar ageing and its microscopic origins , 2021, Nature Energy.

[6]  Gao Liu,et al.  Large-Molecule Decomposition Products of Electrolytes and Additives Revealed by On-Electrode Chromatography and MALDI , 2021, Joule.

[7]  Xiulin Fan,et al.  Identification of LiH and nanocrystalline LiF in the solid–electrolyte interphase of lithium metal anodes , 2021, Nature Nanotechnology.

[8]  W. Goddard,et al.  The DFT-ReaxFF Hybrid Reactive Dynamics Method with Application to the Reductive Decomposition Reaction of the TFSI and DOL Electrolyte at a Lithium-Metal Anode Surface. , 2021, The journal of physical chemistry letters.

[9]  A. Yu,et al.  Constructing multifunctional solid electrolyte interface via in-situ polymerization for dendrite-free and low N/P ratio lithium metal batteries , 2021, Nature communications.

[10]  Chibueze V. Amanchukwu,et al.  Noninvasive In Situ NMR Study of “Dead Lithium” Formation and Lithium Corrosion in Full-Cell Lithium Metal Batteries , 2020, Journal of the American Chemical Society.

[11]  Ji‐Guang Zhang,et al.  Lithium Metal Anodes with Nonaqueous Electrolytes. , 2020, Chemical reviews.

[12]  L. Archer,et al.  Designing electrolytes with polymerlike glass-forming properties and fast ion transport at low temperatures , 2020, Proceedings of the National Academy of Sciences.

[13]  C. Grey,et al.  Selective NMR observation of the SEI–metal interface by dynamic nuclear polarisation from lithium metal , 2020, Nature Communications.

[14]  Eric J. Dufek,et al.  Glassy Li metal anode for high-performance rechargeable Li batteries , 2019, Nature Materials.

[15]  Yuanwen Jiang,et al.  Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors , 2019, Nature Communications.

[16]  Hongkyung Lee,et al.  Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization , 2019, Nature Energy.

[17]  J. Dahn,et al.  Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte , 2019, Nature Energy.

[18]  Qing Zhao,et al.  Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries , 2019, Nature Energy.

[19]  Betar M. Gallant,et al.  Controlling Fluoride‐Forming Reactions for Improved Rate Capability in Lithium‐Perfluorinated Gas Conversion Batteries , 2019, Advanced Energy Materials.

[20]  David G. Mackanic,et al.  Designing polymers for advanced battery chemistries , 2019, Nature Reviews Materials.

[21]  Donghai Wang,et al.  Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions , 2019, Nature Materials.

[22]  Venkat R. Subramanian,et al.  Pathways for practical high-energy long-cycling lithium metal batteries , 2019, Nature Energy.

[23]  Yayuan Liu,et al.  Fast galvanic lithium corrosion involving a Kirkendall-type mechanism , 2019, Nature Chemistry.

[24]  Y. Meng,et al.  Quantifying inactive lithium in lithium metal batteries , 2018, Nature.

[25]  Xiulin Fan,et al.  Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery , 2018, Science Advances.

[26]  Yi Cui,et al.  Correlating Structure and Function of Battery Interphases at Atomic Resolution Using Cryoelectron Microscopy , 2018, Joule.

[27]  Yu-Guo Guo,et al.  Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries , 2018, Science Advances.

[28]  Lynden A. Archer,et al.  Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries , 2018, Nature.

[29]  Ji‐Guang Zhang,et al.  Stable cycling of high-voltage lithium metal batteries in ether electrolytes , 2018, Nature Energy.

[30]  Jianming Zheng,et al.  Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries , 2018 .

[31]  Kang Xu,et al.  Highly Fluorinated Interphases Enable High-Voltage Li-Metal Batteries , 2018 .

[32]  Yi Yu,et al.  Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy , 2017, Science.

[33]  Doron Aurbach,et al.  Very Stable Lithium Metal Stripping–Plating at a High Rate and High Areal Capacity in Fluoroethylene Carbonate-Based Organic Electrolyte Solution , 2017 .

[34]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[35]  P. Balbuena,et al.  Effects of High and Low Salt Concentration in Electrolytes at Lithium–Metal Anode Surfaces , 2017 .

[36]  Tae Kyoung Kim,et al.  Liquefied gas electrolytes for electrochemical energy storage devices , 2017, Science.

[37]  A. Bhatt,et al.  Stabilizing lithium metal using ionic liquids for long-lived batteries , 2016, Nature Communications.

[38]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[39]  Martin Winter,et al.  The Solid Electrolyte Interphase – The Most Important and the Least Understood Solid Electrolyte in Rechargeable Li Batteries , 2009 .

[40]  C. Cramer,et al.  Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. , 2009, The journal of physical chemistry. B.

[41]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[42]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[43]  David A. Dixon,et al.  Time-Dependent Density Functional Theory Calculations of Photoabsorption Spectra in the Vacuum Ultraviolet Region , 2001 .

[44]  Dennis R. Salahub,et al.  Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold , 1998 .

[45]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[46]  J R Kremer,et al.  Computer visualization of three-dimensional image data using IMOD. , 1996, Journal of structural biology.

[47]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[48]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[49]  D. Aurbach,et al.  The electrochemical behavior of 1,3-dioxolane−LiClO4. II, Contaminated solutions , 1990 .

[50]  D. Aurbach,et al.  Identification of Surface Films Formed on Lithium in Dimethoxyethane and Tetrahydrofuran Solutions , 1988 .

[51]  Masamichi Kobayashi,et al.  Crystal vibrations of poly-1,3-dioxolane crystal form II and treatment of statistical errors due to uncertainties in the atomic positions , 1975 .