The periodicity and solutions of the rational difference equation with periodic coefficients

Abstract In this paper, we give necessary and sufficient conditions for generalized solution and periodicity of the difference equation x n + 1 = p n x n − k + x n − ( k + 1 ) q n + x n − ( k + 1 ) with ( k + 2 ) -periodic coefficients, where k ∈ N , x − k − 1 , x − k , ⋯ , x 0 ∈ R . Also, we obtain that the generalized solution is periodic with ( k + 1 ) -period.

[1]  M. A. El-Moneam,et al.  On the Rational Recursive Sequence $x_{n+1}=Ax_{n}+Bx_{n-k}+\frac{\beta x_{n}+\gamma x_{n-k}}{Cx_{n}+Dx_{n-k}}$ , 2010 .

[2]  E. Camouzis,et al.  Periodically forced Pielou's equation , 2007 .

[3]  Cengiz Cinar,et al.  On the positive solutions of the difference equation xn+1=(xn-1)/(1+xnxn-1) , 2004, Appl. Math. Comput..

[4]  Mustafa R. S. Kulenovic,et al.  On the Recursive Sequence yn + 1 = (p + yn − 1)/(qyn + yn − 1) , 2000 .

[5]  Garyfalos Papaschinopoulos,et al.  The periodic nature of the positive solutions of a nonlinear fuzzy max-difference equation , 2006, Inf. Sci..

[6]  Mehdi Dehghan,et al.  On the higher order rational recursive sequence xn=(A/nn-k) + (B/xn-3k) , 2006, Appl. Math. Comput..

[7]  Mehdi Dehghan,et al.  Dynamics of the difference equation xn+1 = (xn+pxn-k)/(xn+q) , 2008, Comput. Math. Appl..

[8]  G. Ladas,et al.  On the Recursive Sequencexn + 1 = α + xn − 1/xn☆ , 1999 .

[9]  C. Schinas,et al.  Boundedness, Attractivity, and Stability of a Rational Difference Equation with Two Periodic Coefficients , 2009 .

[10]  Mehdi Dehghan,et al.  Global stability of a higher order rational recursive sequence , 2006, Appl. Math. Comput..

[11]  L. F. Martins,et al.  The dynamics of χn+1=α+βχnA+Bχn+Cxn-1 facts and conjectures , 2003 .

[12]  Mehdi Dehghan,et al.  The oscillatory character of the recursive sequence xn+1=(alpha+beta xn-k+1)/(A+Bxn-2k+1) , 2006, Appl. Math. Comput..

[13]  H. M. El-Owaidy,et al.  On the recursive sequences xn+1=-αxn-1/β±xn , 2003, Appl. Math. Comput..

[14]  Mustafa R. S. Kulenovic,et al.  A rational difference equation , 2001 .