Fractional order disturbance observer based adaptive sliding mode synchronization of commensurate fractional order Genesio-Tesi system

Abstract In this manuscript, we have studied the adaptive sliding mode synchronization of commensurate fractional order Genesio-Tesi system with disturbance. Firstly, we have discussed the fractional order disturbance observer (FODO) which is based on adaptive sliding mode control laws for a commensurate fractional order Genesio-Tesi system with unknown bounded disturbance. Appropriate control gain parameters have been chosen in such a manner, so that the disturbance observer can approximate the unknown disturbance well. Further, we have designed a simple sliding mode surface based on sliding mode control technique, incorporating the designed fractional order disturbance observer for developing a bounded synchronization control scheme. Finally, the viability and the efficacy of the proposed sliding mode control scheme in the presence of external bounded unknown disturbance for fractional order Genesio-Tesi system is established by the numerical simulation results. We have observed that for different parameters and fractional orders of Genesio-Tesi system the synchronization time varies, which is also demonstrated in numerical simulations. To visualize the robustness and effectiveness of proposed methodology we have compared our results with earlier published results as well. Moreover, as an application, the proposed scheme is then applied to a secure communication scheme. Simulation results verify the proposed schemes success in the communication application.

[1]  Alan V. Oppenheim,et al.  Circuit implementation of synchronized chaos with applications to communications. , 1993, Physical review letters.

[2]  Jesus M. Munoz-Pacheco,et al.  Chaos generation in fractional-order switched systems and its digital implementation , 2017 .

[3]  Saeed Balochian,et al.  Design of adaptive sliding mode control for synchronization Genesio–Tesi chaotic system , 2015 .

[4]  Wen-Hua Chen,et al.  Adaptive fuzzy tracking control for a class of uncertain MIMO nonlinear systems using disturbance observer , 2012, Science China Information Sciences.

[5]  Amr Elsonbaty,et al.  Dynamical behaviors, circuit realization, chaos control, and synchronization of a new fractional order hyperchaotic system , 2016 .

[6]  Shuyi Shao,et al.  Adaptive sliding mode synchronization for a class of fractional-order chaotic systems with disturbance , 2016 .

[7]  Bin Wang,et al.  Takagi-Sugeno fuzzy control for a wide class of fractional-order chaotic systems with uncertain parameters via linear matrix inequality , 2016 .

[8]  Xiaofeng Liao,et al.  Synchronization and chaos in coupled memristor-based FitzHugh-Nagumo circuits with memristor synapse , 2017 .

[9]  Hongtao Lu,et al.  Synchronization of a new fractional-order hyperchaotic system , 2009 .

[10]  Hadi Delavari,et al.  Chaos in fractional-order Genesio–Tesi system and its synchronization , 2012 .

[11]  Wei Wei,et al.  Disturbance observer based active and adaptive synchronization of energy resource chaotic system. , 2016, ISA transactions.

[12]  Mohammad Saleh Tavazoei,et al.  Describing function based methods for predicting chaos in a class of fractional order differential equations , 2009 .

[13]  E. Tlelo-Cuautle,et al.  FPGA realization of a chaotic communication system applied to image processing , 2015 .

[14]  Guangming Wang,et al.  Stabilization and synchronization of Genesio–Tesi system via single variable feedback controller , 2010 .

[15]  Weihua Deng,et al.  Remarks on fractional derivatives , 2007, Appl. Math. Comput..

[16]  Mou Chen,et al.  Terminal sliding mode tracking control for a class of SISO uncertain nonlinear systems. , 2013, ISA transactions.

[17]  Haigang Guo,et al.  Universal function projective lag synchronization of chaotic systems with uncertainty by using active sliding mode and fuzzy sliding mode control , 2015, Nonlinear Dynamics.

[18]  Christos Volos,et al.  A simple three-dimensional fractional-order chaotic system without equilibrium: Dynamics, circuitry implementation, chaos control and synchronization , 2017 .

[19]  Jean-Pierre Barbot,et al.  Sliding Mode Control In Engineering , 2002 .

[20]  Fairouz Tchier,et al.  Composite nonlinear feedback control technique for master/slave synchronization of nonlinear systems , 2017 .

[21]  Jinde Cao,et al.  Active control strategy for synchronization and anti-synchronization of a fractional chaotic financial system , 2017 .

[22]  Zaid Odibat,et al.  Adaptive feedback control and synchronization of non-identical chaotic fractional order systems , 2010 .

[23]  Ju H. Park Synchronization of Genesio chaotic system via backstepping approach , 2006 .

[24]  Vijay K. Yadav,et al.  Dual combination synchronization of the fractional order complex chaotic systems , 2017 .

[25]  Changxu Wu,et al.  A computational cognition model of perception, memory, and judgment , 2014, Science China Information Sciences.

[26]  Shuyi Shao,et al.  Adaptive neural control for an uncertain fractional-order rotational mechanical system using disturbance observer , 2016 .

[27]  S. Khorashadizadeh,et al.  Chaos synchronization using the Fourier series expansion with application to secure communications , 2017 .

[28]  Zhengzhi Han,et al.  Controlling and synchronizing chaotic Genesio system via nonlinear feedback control , 2003 .

[29]  Longge Zhang,et al.  Robust synchronization of two different uncertain fractional-order chaotic systems via adaptive sliding mode control , 2014 .

[30]  Lu Jun-Guo,et al.  Chaotic dynamics and synchronization of fractional-order Genesio–Tesi systems , 2005 .

[31]  W. Deng,et al.  Chaos synchronization of the fractional Lü system , 2005 .

[32]  Chongxin Liu,et al.  Hyperchaos synchronization of fractional-order arbitrary dimensional dynamical systems via modified sliding mode control , 2014 .

[33]  Xing-yuan Wang,et al.  Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control , 2009 .

[34]  Okyay Kaynak,et al.  Robust ${H_\infty }$-Based Synchronization of the Fractional-Order Chaotic Systems by Using New Self-Evolving Nonsingleton Type-2 Fuzzy Neural Networks , 2016, IEEE Transactions on Fuzzy Systems.

[35]  Ling Lü,et al.  Projective synchronization of uncertain scale-free network based on modified sliding mode control technique , 2017 .

[36]  Shangbo Zhou,et al.  Chaos synchronization of the fractional-order Chen's system , 2009 .

[37]  Abdesselem Boulkroune,et al.  Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems , 2016, Int. J. Mach. Learn. Cybern..

[38]  Mou Chen,et al.  Disturbance-observer-based robust synchronization control of uncertain chaotic systems , 2012 .

[39]  M. Haeri,et al.  Synchronization of chaotic fractional-order systems via active sliding mode controller , 2008 .

[40]  Ivo Petrás,et al.  Fractional - order chaotic systems , 2009, 2009 IEEE Conference on Emerging Technologies & Factory Automation.

[41]  Xiaomei Yan,et al.  Modified projective synchronization of fractional-order chaotic systems based on active sliding mode control , 2013, 2013 25th Chinese Control and Decision Conference (CCDC).

[42]  Hui Chen,et al.  A literature survey on smart cities , 2015, Science China Information Sciences.

[43]  Ahmed Alsaedi,et al.  Universal chaos synchronization control laws for general quadratic discrete systems , 2017 .

[44]  Jing Zhang,et al.  Synchronisation of a fractional-order chaotic system using finite-time input-to-state stability , 2016, Int. J. Syst. Sci..

[45]  I. Petráš Stability of Fractional-Order Systems with Rational Orders , 2008, 0811.4102.

[46]  R. Luo,et al.  The control and synchronization of fractional-order Genesio–Tesi system , 2017 .

[47]  Daolin Xu,et al.  Chaos synchronization of the Chua system with a fractional order , 2006 .

[48]  H. Delavari,et al.  Active sliding observer scheme based fractional chaos synchronization , 2012 .

[49]  Ling Li,et al.  Adaptive Fuzzy Control for Nonlinear Fractional-Order Uncertain Systems with Unknown Uncertainties and External Disturbance , 2015, Entropy.

[50]  Sehraneh Ghaemi,et al.  A modified sliding mode approach for synchronization of fractional-order chaotic/hyperchaotic systems by using new self-structuring hierarchical type-2 fuzzy neural network , 2016, Neurocomputing.

[51]  Wen-Hua Chen,et al.  Disturbance observer based control for nonlinear systems , 2004 .

[52]  Vishwesh A. Vyawahare,et al.  FPGA implementation of fractional-order chaotic systems , 2017 .

[53]  Jun-Guo Lu,et al.  Stability Analysis of a Class of Nonlinear Fractional-Order Systems , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[54]  Tsung-Chih Lin,et al.  Chaos Synchronization of Uncertain Fractional-Order Chaotic Systems With Time Delay Based on Adaptive Fuzzy Sliding Mode Control , 2011, IEEE Transactions on Fuzzy Systems.

[55]  Saleh Mobayen,et al.  Design of LMI-based global sliding mode controller for uncertain nonlinear systems with application to Genesio's chaotic system , 2015, Complex..

[56]  Beibei Ren,et al.  Anti-disturbance control of hypersonic flight vehicles with input saturation using disturbance observer , 2015, Science China Information Sciences.

[57]  Esteban Tlelo-Cuautle,et al.  A survey on the integrated design of chaotic oscillators , 2013, Appl. Math. Comput..

[58]  Youan Zhang,et al.  Adaptive neural synchronization control of chaotic systems with unknown control directions under input saturation , 2017 .

[59]  Ruihong Li,et al.  Effects of system parameter and fractional order on dynamic behavior evolution in fractional-order Genesio-Tesi system , 2016 .

[60]  Manuel A. Duarte-Mermoud,et al.  Lyapunov functions for fractional order systems , 2014, Commun. Nonlinear Sci. Numer. Simul..

[61]  Deliang Liang,et al.  Nonlinear state-observer control for projective synchronization of a fractional-order hyperchaotic system , 2012 .

[62]  B. Sharma,et al.  Investigation of chaos in fractional order generalized hyperchaotic Henon map , 2017 .

[63]  Dumitru Baleanu,et al.  Complete synchronization of commensurate fractional order chaotic systems using sliding mode control , 2013 .

[64]  Junwei Lei,et al.  Research on a novel kind of robust terminal sliding mode synchronization of chaotic systems , 2017 .

[65]  Weihua Deng,et al.  The evolution of chaotic dynamics for fractional unified system , 2008 .

[66]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[67]  Abdelkrim Boukabou,et al.  FPGA based hardware and device-independent implementation of chaotic generators , 2017 .