Tunable Thermoelastic Anisotropy in Hybrid Bragg Stacks with Extreme Polymer Confinement

Abstract Controlling thermomechanical anisotropy is important for emerging heat management applications such as thermal interface and electronic packaging materials. Whereas many studies report on thermal transport in anisotropic nanocomposite materials, a fundamental understanding of the interplay between mechanical and thermal properties is missing, due to the lack of measurements of direction‐dependent mechanical properties. In this work, exceptionally coherent and transparent hybrid Bragg stacks made of strictly alternating mica‐type nanosheets (synthetic hectorite) and polymer layers (polyvinylpyrrolidone) were fabricated at large scale. Distinct from ordinary nanocomposites, these stacks display long‐range periodicity, which is tunable down to angstrom precision. A large thermal transport anisotropy (up to 38) is consequently observed, with the high in‐plane thermal conductivity (up to 5.7 W m−1 K−1) exhibiting an effective medium behavior. The unique hybrid material combined with advanced characterization techniques allows correlating the full elastic tensors to the direction‐dependent thermal conductivities. We, therefore, provide a first analysis on how the direction‐dependent Young's and shear moduli influence the flow of heat.

[1]  N. W. Pech-May,et al.  Direct Measurement of the In-Plane Thermal Diffusivity of Semitransparent Thin Films by Lock-In Thermography: An Extension of the Slopes Method , 2019, Analytical chemistry.

[2]  K. Matyjaszewski,et al.  Disentangling the Role of Chain Conformation on the Mechanics of Polymer Tethered Particle Materials , 2019, Nano letters.

[3]  Melik C. Demirel,et al.  Tunable thermal transport and reversible thermal conductivity switching in topologically networked bio-inspired materials , 2018, Nature Nanotechnology.

[4]  J. Breu,et al.  Layer charge robust delamination of organo-clays , 2018, RSC advances.

[5]  Lei Zhu,et al.  Highly Anisotropic, Thermally Conductive, and Mechanically Strong Polymer Composites with Nacre-like Structure for Thermal Management Applications , 2018, ACS Applied Nano Materials.

[6]  T. Mang,et al.  Exceptionally Ductile and Tough Biomimetic Artificial Nacre with Gas Barrier Function , 2018, Advanced materials.

[7]  J. Gabriel,et al.  Isotropic, nematic, and lamellar phases in colloidal suspensions of nanosheets , 2018, Proceedings of the National Academy of Sciences.

[8]  Shaomao Xu,et al.  Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose , 2018, Science Advances.

[9]  M. R. Wagner,et al.  Thermal conductivity and air-mediated losses in periodic porous silicon membranes at high temperatures , 2017, Nature Communications.

[10]  P. Kim,et al.  Phonon Speed, Not Scattering, Differentiates Thermal Transport in Lead Halide Perovskites. , 2017, Nano letters.

[11]  J. Breu,et al.  Large Scale Self-Assembly of Smectic Nanocomposite Films by Doctor Blading versus Spray Coating: Impact of Crystal Quality on Barrier Properties , 2017 .

[12]  E. Kumacheva,et al.  Reversible transition between isotropic and anisotropic thermal transport in elastic polyurethane foams , 2017 .

[13]  Liyi Shi,et al.  Highly Anisotropic Thermal Conductivity of Layer-by-Layer Assembled Nanofibrillated Cellulose/Graphene Nanosheets Hybrid Films for Thermal Management. , 2017, ACS applied materials & interfaces.

[14]  S. Förster,et al.  In-Depth Insights into the Key Steps of Delamination of Charged 2D Nanomaterials. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[15]  Takuzo Aida,et al.  Photonic water dynamically responsive to external stimuli , 2016, Nature Communications.

[16]  K. Matyjaszewski,et al.  A new class of tunable hypersonic phononic crystals based on polymer-tethered colloids , 2015, Nature Communications.

[17]  Markus Antonietti,et al.  Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. , 2015, Nature nanotechnology.

[18]  L. Shao,et al.  High thermal conductivity in amorphous polymer blends by engineered interchain interactions. , 2015, Nature materials.

[19]  A. Lerf Storylines in intercalation chemistry. , 2014, Dalton transactions.

[20]  Thomas L. Bougher,et al.  High thermal conductivity of chain-oriented amorphous polythiophene. , 2014, Nature nanotechnology.

[21]  Lianzhou Wang,et al.  Titanium oxide nanosheets: graphene analogues with versatile functionalities. , 2014, Chemical reviews.

[22]  P. Li,et al.  Large-scale self-assembled zirconium phosphate smectic layers via a simple spray-coating process , 2014, Nature Communications.

[23]  A. Salazar,et al.  Revising the exceptionally high thermal diffusivity of spider silk , 2014 .

[24]  Á. Alegría,et al.  Hydration and Dynamic State of Nanoconfined Polymer Layers Govern Toughness in Nacre‐mimetic Nanocomposites , 2013, Advanced materials.

[25]  J. Coleman,et al.  Liquid Exfoliation of Layered Materials , 2013, Science.

[26]  A. Fery,et al.  In-plane modulus of singular 2:1 clay lamellae applying a simple wrinkling technique. , 2013, ACS applied materials & interfaces.

[27]  A. McGaughey,et al.  Surface chemistry mediates thermal transport in three-dimensional nanocrystal arrays. , 2013, Nature materials.

[28]  E. Bekyarova,et al.  Anisotropic Thermal and Electrical Properties of Thin Thermal Interface Layers of Graphite Nanoplatelet-Based Composites , 2013, Scientific Reports.

[29]  R. Vaia,et al.  Ultralow thermal conductivity in organoclay nanolaminates synthesized via simple self-assembly. , 2013, Nano letters.

[30]  C. Clauser,et al.  Thermal Conductivity of Rocks and Minerals , 2013 .

[31]  J. Senker,et al.  Nanoplatelets of sodium hectorite showing aspect ratios of ≈20,000 and superior purity. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[32]  J. Breu,et al.  Single crystal structure refinement of one- and two-layer hydrates of sodium fluorohectorite , 2012 .

[33]  Martha E. Grady,et al.  Effects of chemical bonding on heat transport across interfaces. , 2012, Nature materials.

[34]  Xiaopeng Huang,et al.  New Secrets of Spider Silk: Exceptionally High Thermal Conductivity and Its Abnormal Change under Stretching , 2012, Advanced materials.

[35]  Michel B. Johnson,et al.  Relationship between thermal conductivity and structure of nacre from Haliotis fulgens , 2011 .

[36]  Qing Li,et al.  Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft x-ray beams , 2011, OPTO.

[37]  N. Wagner,et al.  Poly(ethylene oxide) (PEO) and poly(vinyl pyrolidone) (PVP) induce different changes in the colloid stability of nanoparticles. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[38]  T. Still High Frequency Acoustics in Colloid-Based Meso- and Nanostructures by Spontaneous Brillouin Light Scattering , 2010 .

[39]  Gang Chen,et al.  Polyethylene nanofibres with very high thermal conductivities. , 2010, Nature nanotechnology.

[40]  C. Klieber Ultrafast photo-acoustic spectroscopy of super-cooled liquids , 2010 .

[41]  A. Salazar,et al.  Thermal diffusivity measurements of thin plates and filaments using lock-in thermography. , 2009, The Review of scientific instruments.

[42]  J. Breu,et al.  Zugang zu mikroporösen Materialien durch oxidatives Pillaring von Glimmern , 2008 .

[43]  J. Breu,et al.  A route to microporous materials through oxidative pillaring of micas. , 2008, Angewandte Chemie.

[44]  Gang Chen,et al.  Spectral Phonon Transport Properties of Silicon Based on Molecular Dynamics Simulations and Lattice Dynamics , 2008 .

[45]  I. Dékány,et al.  Layer-by-layer construction of ultrathin hybrid films with proteins and clay minerals , 2007 .

[46]  Paul Zschack,et al.  Ultralow Thermal Conductivity in Disordered, Layered WSe2 Crystals , 2007, Science.

[47]  Gerhard Lagaly,et al.  Grafted organic derivatives of kaolinite: II. Intercalation of primary n-alkylamines and delamination , 2005, Clay Minerals.

[48]  James K. Carson,et al.  Thermal conductivity bounds for isotropic, porous materials , 2005 .

[49]  J. Breu,et al.  Single crystal structure refinement of tetramethylammonium-hectorite , 2005 .

[50]  Zhiyong Tang,et al.  Nanostructured artificial nacre , 2003, Nature materials.

[51]  D. Schmitt,et al.  Experimental determination of the elastic coefficients of an orthorhombic material , 2001 .

[52]  Günter,et al.  Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals. , 1994, Physical review. B, Condensed matter.

[53]  Y. Chu,et al.  A method for determination of elastic constants of a unidirectional lamina from ultrasonic bulk velocity measurements on [0/90] cross‐ply composites , 1994 .

[54]  Laurie E. McNeil,et al.  Elastic moduli of muscovite mica , 1993 .

[55]  R. James Brown,et al.  Orthorhombic anisotropy: A physical seismic modeling study , 1991 .

[56]  W. Huff X-ray Diffraction and the Identification and Analysis of Clay Minerals , 1990 .

[57]  S Cusack,et al.  Determination of the elastic constants of collagen by Brillouin light scattering. , 1979, Journal of molecular biology.

[58]  J. Krüger,et al.  Brillouin scattering of semicrystalline poly(4-methyl-1-pentene): study of surface effects of bulk and film material , 1978 .

[59]  H. Cummins,et al.  BRILLOUIN SCATTERING EXPERIMENTS IN THE FERROELECTRIC CRYSTAL TRIGLYCINE SULFATE , 1967 .