Final Results of GERDA on the Search for Neutrinoless Double-β Decay.

The GERmanium Detector Array (GERDA) experiment searched for the lepton-number-violating neutrinoless double-β (0νββ) decay of ^{76}Ge, whose discovery would have far-reaching implications in cosmology and particle physics. By operating bare germanium diodes, enriched in ^{76}Ge, in an active liquid argon shield, GERDA achieved an unprecedently low background index of 5.2×10^{-4} counts/(keV kg yr) in the signal region and met the design goal to collect an exposure of 100 kg yr in a background-free regime. When combined with the result of Phase I, no signal is observed after 127.2 kg yr of total exposure. A limit on the half-life of 0νββ decay in ^{76}Ge is set at T_{1/2}>1.8×10^{26}  yr at 90% C.L., which coincides with the sensitivity assuming no signal.

M. Misiaszek | K. Knöpfle | A. Caldwell | B. Majorovits | I. Lippi | A. Pullia | A. Zsigmond | C. Bauer | P. Piseri | E. Bellotti | M. Laubenstein | W. Maneschg | S. Schönert | H. Simgen | G. Zuzel | R. Brugnera | A. Garfagnini | L. Pandola | W. Hofmann | F. Fischer | A. Bettini | K. Zuber | M. Lindner | B. Schwingenheuer | J. Jochum | B. Lubsandorzhiev | S. Belogurov | I. Kirpichnikov | A. Klimenko | A. Smolnikov | A. Vasenko | I. Nemchenok | C. Vignoli | M. Agostini | A. Bakalyarov | M. Balata | I. Barabanov | L. Baudis | L. Bezrukov | V. Brudanin | C. Cattadori | A. Chernogorov | E. Demidova | A. Gangapshev | P. Grabmayr | V. Gurentsov | K. Gusev | S. Hemmer | M. Hult | L. Inzhechik | J. Janicskó Csáthy | M. Junker | T. Kihm | O. Kochetov | V. Kornoukhov | V. Kuzminov | A. Lazzaro | A. Lubashevskiy | G. Lutter | C. Macolino | K. Pelczar | S. Riboldi | N. Rumyantseva | C. Sada | J. Schreiner | O. Schulz | E. Shevchik | M. Shirchenko | K. von Sturm | T. Wester | E. Yanovich | I. Zhitnikov | S. Zhukov | D. Zinatulina | N. Di Marco | D. Borowicz | V. D’Andrea | E. Doroshkevich | C. Gooch | J. Hakenmüller | J. J. Csáthy | V. Kazalov | R. Kneissl | M. Miloradovic | R. Mingazheva | P. Moseev | K. Panas | F. Salamida | A. Schütz | O. Selivanenko | A. Veresnikova | C. Wiesinger | T. Comellato | R. Hiller | L. Pertoldi | C. Ransom | A. Zschocke | N. Marco | P. Krause | M. Schwarz | V. Bothe | K. Sturm | B. Zatschler | Y. Kermaïdic | L. Manzanillas | M. Fomina | D. Stukov | L. Shtembari | F. Fischer | G. Araujo | E. Bossio | M. Schütt | M. Wójcik | J. Csáthy | V. Biancacci | J. Huang | H. Khushbakht | L. Rauscher | Y. Müller | V. Kuzminov

[1]  F. Nowacki,et al.  Calculation of the neutrinoless double- β decay matrix element within the realistic shell model , 2020, Physical Review C.

[2]  P. T. Surukuchi,et al.  Improved Limit on Neutrinoless Double-Beta Decay in ^{130} Te with CUORE. , 2019, Physical review letters.

[3]  B. Paul,et al.  The CUPID-Mo experiment for neutrinoless double-beta decay: performance and prospects , 2019, The European Physical Journal C.

[4]  M. Misiaszek,et al.  Modeling of GERDA Phase II data , 2019, Journal of High Energy Physics.

[5]  M. Misiaszek,et al.  Probing Majorana neutrinos with double-β decay , 2019, Science.

[6]  J. Beeman,et al.  Final Result of CUPID-0 Phase-I in the Search for the ^{82}Se Neutrinoless Double-β Decay. , 2019, Physical review letters.

[7]  A. K. Soma,et al.  Search for Neutrinoless Double-β Decay with the Complete EXO-200 Dataset. , 2019, Physical review letters.

[8]  H. B. Kim,et al.  First results from the AMoRE-Pilot neutrinoless double beta decay experiment , 2019, The European Physical Journal C.

[9]  F. E. Bertrand,et al.  Search for neutrinoless double- β decay in Ge76 with 26 kg yr of exposure from the Majorana Demonstrator , 2019, Physical Review C.

[10]  D. Budjáš,et al.  Characterization of 30 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{76}$$\end{document}76Ge enriched Broad Energy , 2019, The European Physical Journal C.

[11]  F. T. Collaboration,et al.  LEGEND: The Large Enriched Germanium Experiment for Neutrinoless Double-Beta Decay , 2018, 1810.00849.

[12]  P. Vogel,et al.  0νββ and 2νββ nuclear matrix elements evaluated in closure approximation, neutrino potentials and SU(4) symmetry , 2018, Physical Review C.

[13]  J. Menendez Neutrinoless $\beta\beta$ decay mediated by the exchange of light and heavy neutrinos: the role of nuclear structure correlations , 2018, 1804.02105.

[14]  M. Misiaszek,et al.  Improved Limit on Neutrinoless Double-β Decay of ^{76}Ge from GERDA Phase II. , 2018, Physical review letters.

[15]  A. Faessler,et al.  0 nu beta beta-decay nuclear matrix element for light and heavy neutrino mass mechanisms from deformed quasiparticle random-phase approximation calculations for Ge-76, Se-82, Te-130, Xe-136, and Nd-150 with isospin restoration , 2018, 1803.09195.

[16]  B. Schwingenheuer,et al.  Pulse shape discrimination performance of inverted coaxial Ge detectors , 2017, 1711.01433.

[17]  M. Misiaszek,et al.  Upgrade for Phase II of the Gerda experiment , 2017, 1711.01452.

[18]  W. Hofmann,et al.  The large enriched germanium experiment for neutrinoless double beta decay (LEGEND) , 2017, 1709.01980.

[19]  D. Budjáš,et al.  Mitigation of $$^{42}$$42Ar/$$^{42}$$42K background for the GERDA Phase II experiment , 2017, 1708.00226.

[20]  M. Misiaszek,et al.  Background-free search for neutrinoless double-β decay of 76Ge with GERDA , 2017, Nature.

[21]  J. Yao,et al.  Nuclear matrix element of neutrinoless double-β decay : relativity and short-range correlations , 2017, 1702.02448.

[22]  M. Decowski,et al.  Search for Majorana Neutrinos Near the Inverted Mass Hierarchy Region with KamLAND-Zen. , 2016, Physical review letters.

[23]  J. Jochum,et al.  The performance of the Muon Veto of the Gerda experiment , 2016, 1601.05935.

[24]  L. M. Moutinho,et al.  Sensitivity of NEXT-100 to neutrinoless double beta decay , 2015, 1511.09246.

[25]  Ny,et al.  Current Status and Future Prospects of the SNO+ Experiment , 2015, 1508.05759.

[26]  P. Guzowski,et al.  Result of the search for neutrinoless double-$\beta$ decay in $^{100}$Mo with the NEMO-3 experiment , 2015, 1506.05825.

[27]  J. Barea,et al.  0 ν β β and 2 ν β β nuclear matrix elements in the interacting boson model with isospin restoration , 2015, 1506.08530.

[28]  J. Hyvärinen,et al.  Nuclear matrix elements for $0\nu\beta\beta$ decays with light or heavy Majorana-neutrino exchange , 2015 .

[29]  D. Budjáš,et al.  Improvement of the energy resolution via an optimized digital signal processing in GERDA Phase I , 2015, 1502.04392.

[30]  D. Budjáš,et al.  LArGe: active background suppression using argon scintillation for the Gerda$$0\nu \beta \beta $$0νββ-experiment , 2015, 1501.05762.

[31]  D. Budjáš,et al.  Results on $$\beta \beta $$ββ decay with emission of two neutrinos or Majorons in $$^{76}$$76Ge from GERDA Phase I , 2015, 1501.02345.

[32]  D. Budjáš,et al.  Production, characterization and operation of $$^{76}$$76Ge enriched BEGe detectors in GERDA , 2014, 1410.0853.

[33]  T. R. Rodríguez,et al.  Shape and pairing fluctuation effects on neutrinoless double beta decay nuclear matrix elements. , 2013, Physical review letters.

[34]  D. Budjáš,et al.  Results on neutrinoless double-β decay of 76Ge from phase I of the GERDA experiment. , 2013, Physical review letters.

[35]  C. A. Ur,et al.  Pulse shape discrimination for Gerda Phase I data , 2013, 1307.2610.

[36]  M. Mustonen,et al.  Large-scale calculations of the double- β decay of 76 Ge , 130 Te , 136 Xe , and 150 Nd in the deformed self-consistent Skyrme quasiparticle random-phase approximation , 2013, 1301.6997.

[37]  C. A. Ur,et al.  The Gerda experiment for the search of 0νββ decay in 76Ge , 2012, 1212.4067.

[38]  L. Pandola,et al.  Off-line data processing and analysis for the GERDA experiment , 2011, 1111.3582.

[39]  D. Radford,et al.  A novel HPGe detector for gamma-ray tracking and imaging , 2011 .

[40]  B. Majorovits,et al.  Development of an anti-Compton veto for HPGe detectors operated in liquid argon using silicon photo-multipliers , 2010, 1011.2748.

[41]  G. Martínez-Pinedo,et al.  Energy density functional study of nuclear matrix elements for neutrinoless ββ decay. , 2010, Physical review letters.

[42]  D. Budj'avs,et al.  Pulse shape discrimination studies with a Broad-Energy Germanium detector for signal identification and background suppression in the GERDA double beta decay experiment , 2009, 0909.4044.

[43]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[44]  H. Klapdor-kleingrothaus,et al.  Latest results from the HEIDELBERG-MOSCOW double beta decay experiment , 2001, hep-ph/0103062.

[45]  A. G. Tamanyan,et al.  Recent results of the IGEX 76Ge double-beta decay experiment , 2000 .

[46]  José W. F. Valle,et al.  Neutrinoless Double beta Decay in SU(2) x U(1) Theories , 1982 .

[47]  R. Kouzes,et al.  A Search for Neutrinoless Double-Beta Decay in 76 Ge with 26 kg-yr of Exposure from the Majorana Demonstrator , 2019 .

[48]  J. Hyvärinen,et al.  Nuclear matrix elements for 0νββ decays with light or heavy Majorana-neutrino exchange , 2015 .

[49]  D. Budjáš,et al.  Results on ββ decay with emission of two neutrinos or Majorons in 76 Ge from GERDA Phase I , 2015 .

[50]  D. Budjáš,et al.  LArGe: active background suppression using argon scintillation for the Gerda 0 νββ -experiment , 2015 .

[51]  P. Schwaller,et al.  Leptogenesis , 2008, 0802.2962.

[52]  E. G. Myers,et al.  Double-β-decay Q values of 74Se and 76Ge , 2010 .

[53]  G. Heusser,et al.  Low-Radioactivity Background Techniques , 1995 .

[54]  Warburton Shell model predictions for 19N , 1988, Physical review. C, Nuclear physics.