On estimation of the logarithmic Sobolev constant and gradient estimates of heat semigroups
暂无分享,去创建一个
[1] E. Davies,et al. Heat kernels and spectral theory , 1989 .
[2] P. Matthews. Mixing rates for Brownian motion in a convex polyhedron , 1990, Journal of Applied Probability.
[3] Chen Mu. Application of Coupling Method to the First Eigenvalue on Manifold , 1994 .
[4] I. Chavel. Eigenvalues in Riemannian geometry , 1984 .
[5] Wilfrid S. Kendall,et al. Nonnegative ricci curvature and the brownian coupling property , 1986 .
[6] Feng-Yu Wang,et al. Estimates of Logarithmic Sobolev Constant: An Improvement of Bakry–Emery Criterion , 1997 .
[7] K. Elworthy,et al. Formulae for the Derivatives of Heat Semigroups , 1994, 1911.10971.
[8] GRADIENT ESTIMATES AND HEAT KERNEL ESTIMATES , 1995 .
[9] L. Gross. Logarithmic Sobolev inequalities and contractivity properties of semigroups , 1993 .
[10] W. Kendall. The Radial Part of Brownian Motion on a Manifold: A Semimartingale Property , 1987 .
[11] M. Cranston. Gradient estimates on manifolds using coupling , 1991 .
[12] A. G. Setti. Gaussian Estimates for the Heat Kernel of the Weighted Laplacian and Fractal Measures , 1992, Canadian Journal of Mathematics.
[13] J. Bismut. The Witten complex and the degenerate Morse inequalities , 1986 .
[14] S. Yau,et al. On the parabolic kernel of the Schrödinger operator , 1986 .
[15] Feng-Yu Wang. Application of coupling methods to the Neumann eigenvalue problem , 1994 .