A Physical Interpretation of Tight Frames
暂无分享,去创建一个
Peter G. Casazza | Jelena Kovacevic | Matthew Fickus | Manuel T. Leon | Janet C. Tremain | P. Casazza | J. Kovacevic | J. Tremain | M. Fickus | M. Leon
[1] I. Daubechies,et al. PAINLESS NONORTHOGONAL EXPANSIONS , 1986 .
[2] Vivek K Goyal. Quantized Overcomplete Expansions : Analysis , Synthesis and Algorithms , 1995 .
[3] S. Waldron,et al. Tight Frames and Their Symmetries , 2004 .
[4] Vivek K Goyal,et al. Quantized Frame Expansions with Erasures , 2001 .
[5] Shirley Dex,et al. JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .
[6] Shayne Waldron,et al. Generalized Welch bound equality sequences are tight fram , 2003, IEEE Trans. Inf. Theory.
[7] V. Paulsen,et al. Optimal frames for erasures , 2004 .
[8] A. Horn. Doubly Stochastic Matrices and the Diagonal of a Rotation Matrix , 1954 .
[9] Nate Strawn,et al. Manifold structure of spaces of spherical tight frames , 2003, math/0307367.
[10] Thomas L. Marzetta,et al. Systematic design of unitary space-time constellations , 2000, IEEE Trans. Inf. Theory.
[11] Georg Zimmermann,et al. Normalized Tight Frames in Finite Dimensions , 2001 .
[12] Helmut Bölcskei,et al. Frame-theoretic analysis of oversampled filter banks , 1998, IEEE Trans. Signal Process..
[13] Keri Kornelson,et al. Ellipsoidal tight frames and projection decompositions of operators , 2003 .
[14] Vivek K. Goyal,et al. Filter bank frame expansions with erasures , 2002, IEEE Trans. Inf. Theory.
[15] Zoran Cvetkovic. Resilience properties of redundant expansions under additive noise and quantization , 2003, IEEE Trans. Inf. Theory.
[16] Michael Unser,et al. Texture classification and segmentation using wavelet frames , 1995, IEEE Trans. Image Process..
[17] T. Strohmer. Finite-and Infinite-Dimensional Models for Oversampled Filter Banks , 2001 .
[18] Michael Unser,et al. Wavelet Applications in Signal and Image Processing II: 27-29 July 1994, San Diego, California , 1994 .
[19] Peter G. Casazza,et al. Equal-Norm Tight Frames with Erasures , 2003, Adv. Comput. Math..
[20] John J. Benedetto,et al. Periodic Wavelet Transforms and Periodicity Detection , 2002, SIAM J. Appl. Math..
[21] Kurt Jetter,et al. Recent Progress in Multivariate Approximation , 2001 .
[22] John J. Benedetto,et al. Wavelet analysis of spectrogram seizure chirps , 1995, Optics + Photonics.
[23] I. Daubechies. Ten Lectures on Wavelets , 1992 .
[24] R. Duffin,et al. A class of nonharmonic Fourier series , 1952 .
[25] John J. Benedetto,et al. Wavelet periodicity detection algorithms , 1998, Optics & Photonics.
[26] Venkat Anantharam,et al. Optimal sequences and sum capacity of synchronous CDMA systems , 1999, IEEE Trans. Inf. Theory.
[27] Martin Vetterli,et al. Oversampled filter banks , 1998, IEEE Trans. Signal Process..
[28] John J. Benedetto,et al. Finite Normalized Tight Frames , 2003, Adv. Comput. Math..
[29] Thomas Strohmer,et al. GRASSMANNIAN FRAMES WITH APPLICATIONS TO CODING AND COMMUNICATION , 2003, math/0301135.
[30] Dennis Gabor,et al. Theory of communication , 1946 .