Problems in pattern classification in high dimensional spaces: behavior of a class of combined neuro-fuzzy classifiers

[1]  Rached Tourki,et al.  Effect of the feature vector size on the generalization error: the case of MLPNN and RBFNN classifiers , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[2]  Fuad Rahman,et al.  An Evaluation Of Multi-Expert Configurations For The Recognition Of Handwritten Numerals , 1998, Pattern Recognit..

[3]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[4]  Sarunas Raudys,et al.  Evolution and generalization of a single neurone: I. Single-layer perceptron as seven statistical classifiers , 1998, Neural Networks.

[5]  Sarunas Raudys,et al.  Evolution and generalization of a single neurone: : II. Complexity of statistical classifiers and sample size considerations , 1998, Neural Networks.

[6]  Yi Lu,et al.  Fuzzy integration of classification results , 1997, Pattern Recognit..

[7]  Ching Y. Suen,et al.  Application of majority voting to pattern recognition: an analysis of its behavior and performance , 1997, IEEE Trans. Syst. Man Cybern. Part A.

[8]  Ahmad Fuad Rezaur Rahman,et al.  Exploiting second order information to design a novel multiple expert decision combination platform for pattern classification , 1997 .

[9]  Josef Kittler,et al.  Combining classifiers , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[10]  R. Bellman,et al.  Abstraction and pattern classification , 1996 .

[11]  Yoshihiko Hamamoto,et al.  On the Behavior of Artificial Neural Network Classifiers in High-Dimensional Spaces , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Kagan Tumer,et al.  Analysis of decision boundaries in linearly combined neural classifiers , 1996, Pattern Recognit..

[13]  Sung-Bae Cho,et al.  Multiple network fusion using fuzzy logic , 1995, IEEE Trans. Neural Networks.

[14]  Galina L. Rogova,et al.  Combining the results of several neural network classifiers , 1994, Neural Networks.

[15]  Mohamed S. Kamel,et al.  New algorithms for solving the fuzzy clustering problem , 1994, Pattern Recognit..

[16]  Ching Y. Suen,et al.  Building a new generation of handwriting recognition systems , 1993, Pattern Recognit. Lett..

[17]  L. Cooper,et al.  When Networks Disagree: Ensemble Methods for Hybrid Neural Networks , 1992 .

[18]  Joydeep Ghosh,et al.  Evidence combination techniques for robust classification of short-duration oceanic signals , 1992, Defense, Security, and Sensing.

[19]  Adam Krzyżak,et al.  Methods of combining multiple classifiers and their applications to handwriting recognition , 1992, IEEE Trans. Syst. Man Cybern..

[20]  James C. Bezdek,et al.  Fuzzy Kohonen clustering networks , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[21]  Shijie Wang,et al.  Exponential growth rate of Dempster-Shafer belief functions , 1992, Defense, Security, and Sensing.

[22]  Fumitaka Kimura,et al.  Handwritten numerical recognition based on multiple algorithms , 1991, Pattern Recognit..

[23]  Anil K. Jain,et al.  Small Sample Size Effects in Statistical Pattern Recognition: Recommendations for Practitioners , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[25]  F. J. Wyman,et al.  A comparison of asymptotic error rate expansions for the sample linear discriminant function , 1990, Pattern Recognit..

[26]  Ching Y. Suen,et al.  Complementary algorithms for the recognition of totally unconstrained handwritten numerals , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[27]  Anil K. Jain,et al.  Small sample size effects in statistical pattern recognition: recommendations for practitioners and open problems , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[28]  James D. Keeler,et al.  Layered Neural Networks with Gaussian Hidden Units as Universal Approximations , 1990, Neural Computation.

[29]  Teuvo Kohonen,et al.  Self-organization and associative memory: 3rd edition , 1989 .

[30]  A. Khotanzad,et al.  Distortion invariant character recognition by a multi-layer perceptron and back-propagation learning , 1988, IEEE 1988 International Conference on Neural Networks.

[31]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[32]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[33]  Jeffrey A. Barnett,et al.  Computational Methods for a Mathematical Theory of Evidence , 1981, IJCAI.

[34]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[35]  Sarunas Raudys,et al.  On Dimensionality, Sample Size, Classification Error, and Complexity of Classification Algorithm in Pattern Recognition , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  J. V. Ness,et al.  On the Effects of Dimension in Discriminant Analysis , 1976 .

[37]  Josef Kittler,et al.  Mathematics Methods of Feature Selection in Pattern Recognition , 1975, Int. J. Man Mach. Stud..

[38]  Laveen N. Kanal,et al.  Patterns in pattern recognition: 1968-1974 , 1974, IEEE Trans. Inf. Theory.

[39]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[40]  Oscar Firschein,et al.  Describing and abstracting pictorial structures , 1971, Pattern Recognit..

[41]  B. Chandrasekaran,et al.  On dimensionality and sample size in statistical pattern classification , 1971, Pattern Recognit..

[42]  B. Chandrasekaran,et al.  Independence of measurements and the mean recognition accuracy , 1971, IEEE Trans. Inf. Theory.

[43]  A. Calverley,et al.  Mesa profiles and edge breakdown of silicon avalanche diodes , 1970 .

[44]  Enrique H. Ruspini,et al.  A New Approach to Clustering , 1969, Inf. Control..

[45]  B. Chandrasekaran,et al.  Comments on "On the mean accuracy of statistical pattern recognizers" by Hughes, G. F , 1969, IEEE Trans. Inf. Theory.

[46]  Richard Bellman,et al.  Adaptive Control Processes: A Guided Tour , 1961, The Mathematical Gazette.

[47]  Yi Lu,et al.  Knowledge integration in a multiple classifier system , 2004, Applied Intelligence.

[48]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[49]  Ching Y. Suen,et al.  A Method of Combining Multiple Experts for the Recognition of Unconstrained Handwritten Numerals , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[50]  S. Raudys,et al.  Why do multilayer perceptrons have favorable small sample properties , 1994 .

[51]  Sargur N. Srihari,et al.  Decision Combination in Multiple Classifier Systems , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[52]  Sariinas Raudys,et al.  ON SHAPE OF PATTERN ERROR FUNCTION, INITIALIZATIONS AND INTRINSIC DIMENSIONALITY IN ANN CLASSIFIER DESIGN , 1993 .

[53]  Kęstutis Lašinskas,et al.  The overlappingly decomposed networks , 1992 .

[54]  Anil K. Jain,et al.  Small sample size problems in designing artificial neural networks , 1991 .

[55]  Anil K. Jain,et al.  Artificial neural networks and statistical pattern recognition : old and new connections , 1991 .

[56]  Sariinas Ra Ud Ys ON THE EFFECTIVENESS OF PARZEN WINDOW CLASSIFIER , 1991 .

[57]  Josef Skrzypek,et al.  Synergy of Clustering Multiple Back Propagation Networks , 1989, NIPS.

[58]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory, Third Edition , 1989, Springer Series in Information Sciences.

[59]  E. Mandler,et al.  Combining the Classification Results of Independent Classifiers Based on the Dempster/Shafer Theory of Evidence , 1988 .

[60]  Keinosuke Fukunaga,et al.  Bias of Nearest Neighbor Error Estimates , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[61]  Josef Kittler,et al.  Pattern recognition : a statistical approach , 1982 .

[62]  Anil K. Jain,et al.  39 Dimensionality and sample size considerations in pattern recognition practice , 1982, Classification, Pattern Recognition and Reduction of Dimensionality.

[63]  Abraham Kandel,et al.  Fuzzy techniques in pattern recognition , 1982 .

[64]  G. Winkler,et al.  A combination of statistical and syntactical pattern recognition applied to classification of unconstrained handwritten numerals , 1980, Pattern Recognit..

[65]  John Van Ness,et al.  On the dominance of non-parametric Bayes rule discriminant algorithms in high dimensions , 1980, Pattern Recognit..

[66]  Sargur N. Srihari,et al.  Recursive Implementation of a Two-Step Nonparametric Decision Rule , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[67]  Anil K. Jain,et al.  On the optimal number of features in the classification of multivariate Gaussian data , 1978, Pattern Recognit..

[68]  Anil K. Jain,et al.  MEAN RECOGNITION ACCURACY OF DEPENDENT BINARY MEASUREMENTS. , 1977 .

[69]  Ch Chen,et al.  Pattern recognition and artificial intelligence , 1976 .

[70]  B. Chandrasekaran,et al.  Quantization Complexity and Independent Measurements , 1974, IEEE Transactions on Computers.

[71]  J. Dunn A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .

[72]  James C. Bezdek,et al.  Fuzzy mathematics in pattern classification , 1973 .

[73]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[74]  G. F. Hughes,et al.  On the mean accuracy of statistical pattern recognizers , 1968, IEEE Trans. Inf. Theory.