Graphene Layer Growth: Collision of Migrating Five-Member Rings - eScholarship

Graphene layer growth: Collision of migrating five- member rings Russell Whitesides a , Alexander C. Kollias b,c , Dominik Domin b , William A. Lester, Jr. b,c , Michael Frenklach a a Department of Mechanical Engineering, University of California, Berkeley, CA 94720-1740 and Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA b Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, CA 94720-1460 c Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Corresponding author: Professor Michael Frenklach Department of Mechanical Engineering University of California at Berkeley Berkeley, CA 94720-1740, USA Phone: (510) 643-1676 Fax: (510) 643-5599 E-mail: myf@me.berkeley.edu WORD COUNT (Determined by Method 1) Text (counted by MS Word 2003) 40 References (40+2)*2.3*7.6 3 Equations (4+4+4)*7.6 5 Figures (435+386+122+175+250) 4 Tables 4*((10+2)*7.6) Abstract (not included in Total) Total Accepted for Oral Presentation and Publication at 31 st International Symposium on Combustion University of Heidelberg, Germany, August 6-11, 2006

[1]  A. Sarofim,et al.  Soot morphology: An application of image analysis in high‐resolution transmission electron microscopy , 1996, Microscopy research and technique.

[2]  Stephen E. Stein,et al.  Detailed kinetic modeling of soot formation in shock-tube pyrolysis of acetylene , 1985 .

[3]  N. Brown,et al.  Hydrogen migration in polyaromatic growth , 1998 .

[4]  N. Marsh,et al.  Formation pathways of ethynyl-substituted and cyclopenta-fused polycyclic aromatic hydrocarbons , 2000 .

[5]  Steven N. Rogak,et al.  Study of soot growth in a plug flow reactor using a moving sectional model , 2005 .

[6]  M. Frenklach On surface growth mechanism of soot particles , 1996 .

[7]  K. J. Hüttinger,et al.  Consideration of reaction mechanisms leading to pyrolytic carbon of different textures , 2002 .

[8]  M. Frenklach,et al.  Detailed modeling of soot particle nucleation and growth , 1991 .

[9]  Jill C. Tarter,et al.  Carbon in the Galaxy: Studies from Earth and Space , 1990 .

[10]  H. Bockhorn,et al.  Kinetic modeling of soot formation with detailed chemistry and physics: laminar premixed flames of C2 hydrocarbons , 2000 .

[11]  J. Barker,et al.  Multiple‐Well, multiple‐path unimolecular reaction systems. II. 2‐methylhexyl free radicals , 2001 .

[12]  Daniel C. Haworth,et al.  Interactions among soot, thermal radiation, and NOx emissions in oxygen-enriched turbulent nonpremixed flames: a computational fluid dynamics modeling study , 2005 .

[13]  Peter Glarborg,et al.  Formation of polycyclic aromatic hydrocarbons and soot in fuel-rich oxidation of methane in a laminar flow reactor , 2004 .

[14]  C. Jacobsen,et al.  X-ray scattering and spectroscopy studies on diesel soot from oxygenated fuel under various engine load conditions , 2005 .

[15]  J. Troe,et al.  Collisional deactivation of vibrationally highly excited polyatomic molecules. II. Direct observations for excited toluene , 1983 .

[16]  J. Cioslowski,et al.  Electronic Structure Studies of 1,2-Didehydrogenation of Arenes and Rearrangement of Arynes to Annelated Cyclopentadienylidenecarbenes , 1998 .

[17]  R. Hurt,et al.  Equilibrium nanostructure of primary soot particles , 2000 .

[18]  Markus Kraft,et al.  Measurement and numerical simulation of soot particle size distribution functions in a laminar premixed ethylene-oxygen-argon flame , 2003 .

[19]  Angela Violi,et al.  Modeling of soot particle inception in aromatic and aliphatic premixed flames , 2004 .

[20]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[21]  G. M. Faeth,et al.  Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix H , 2001 .

[22]  Russell D. Johnson,et al.  NIST Computational Chemistry Comparison and Benchmark Database , 2005 .

[23]  Joseph L. Durant,et al.  Evaluation of transition state properties by density functional theory , 1996 .

[24]  M. Frenklach,et al.  Transport properties of polycyclic aromatic hydrocarbons for flame modeling , 1994 .

[25]  J. T. Mckinnon,et al.  Hydrogen atom mediated Stone-Wales rearrangement of pyracyclene: a model for annealing in fullerene formation. , 2005, The journal of physical chemistry. A.

[26]  J. Barker,et al.  Vibrational Energy Transfer Modeling of Nonequilibrium Polyatomic Reaction Systems , 2001 .

[27]  L. Radom,et al.  Determination of Arrhenius Parameters for Propagation in Free-Radical Polymerizations: An Assessment of ab Initio Procedures , 1996 .

[28]  M. Kraft,et al.  Detailed Modeling of soot formation in a partially stirred plug flow reactor , 2002 .

[29]  Alberto C. Barone,et al.  Morphological characterization of the early process of soot formation by atomic force microscopy , 2003 .

[30]  B. Bockrath,et al.  On the chemical nature of graphene edges: origin of stability and potential for magnetism in carbon materials. , 2005, Journal of the American Chemical Society.

[31]  Sean C. Smith,et al.  Theory of Unimolecular and Recombination Reactions , 1990 .

[32]  John R. Barker,et al.  Multiple‐Well, multiple‐path unimolecular reaction systems. I. MultiWell computer program suite , 2001 .

[33]  G. Scuseria,et al.  Gaussian 03, Revision E.01. , 2007 .

[34]  Michael Frenklach,et al.  Migration mechanism of aromatic-edge growth , 2005 .

[35]  Michael Frenklach,et al.  Kinetic Monte Carlo simulations of CVD diamond growth—Interlay among growth, etching, and migration , 2005 .

[36]  I. Tokmakov,et al.  Reaction of phenyl radicals with acetylene: quantum chemical investigation of the mechanism and master equation analysis of the kinetics. , 2003, Journal of the American Chemical Society.

[37]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[38]  B. Haynes,et al.  The Surface Growth Phenomenon in Soot Formation , 1982 .

[39]  Michael Frenklach,et al.  Reaction mechanism of soot formation in flames , 2002 .

[40]  N. Brown,et al.  HYDROGEN MIGRATION IN THE PHENYLETHEN-2-YL RADICAL , 1999 .