Techniques for Reducing Fiber-fed and Integral-field Spectroscopy Data

This paper describes the general characteristics of raw data from fiber-fed spectrographs in general and fiber-fed IFUs in particular. The different steps of the data reduction are presented, and the techniques used to address the unusual characteristics of these data are described in detail. These techniques have been implemented in a specialized software package, R3D, developed to reduce fiber-based integral field spectroscopy (IFS) data. The package comprises a set of command-line routines adapted for each of these steps, suitable for creating pipelines. The routines have been tested against simulations, and against real data from various integral field spectrographs (PMAS, PPAK, GMOS, VIMOS and INTEGRAL). Particular attention is paid to the treatment of cross-talk. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  C. G. Wynne,et al.  A dedicated echelle spectrometer for the Anglo-Australian Telescope , 1984 .

[2]  Matthew A. Bershady,et al.  SparsePak: A Formatted Fiber Field Unit for The WIYN Telescope Bench Spectrograph. II. On-Sky Performance , 2005 .

[3]  R. Seaman,et al.  Integral Field Spectroscopy with Gemini: Support for IFU data in the Gemini IRAF package , 2006 .

[4]  L. Christensen,et al.  Integral Field Spectroscopy of the Central Regions of 3C 120: Evidence of a Past Merging Event , 2004, astro-ph/0411298.

[5]  G. Jacoby,et al.  Improved observations of faint planetary nebulae in the Magellanic Clouds , 1993 .

[6]  A. V. Filippenko,et al.  THE IMPORTANCE OF ATMOSPHERIC DIFFERENTIAL REFRACTION IN SPECTROPHOTOMETRY. , 1982 .

[7]  Evencio Mediavilla,et al.  Differential atmospheric refraction in integral-field spectroscopy: Effects and correction - Atmospheric refraction in IFS , 1999 .

[8]  Molefe Mokoene,et al.  The Messenger , 1995, Outrageous Fortune.

[9]  H Germany,et al.  PMAS: The Potsdam Multi‐Aperture Spectrophotometer. I. Design, Manufacture, and Performance , 2005, astro-ph/0502581.

[10]  M. Bershady,et al.  SparsePak: A Formatted Fiber Field Unit for the WIYN Telescope Bench Spectrograph. I. Design, Construction, and Calibration , 2004, astro-ph/0403456.

[11]  A. Mazure,et al.  The VVDS Data‐Reduction Pipeline: Introducing VIPGI, the VIMOS Interactive Pipeline and Graphical Interface , 2004, astro-ph/0409248.

[12]  S. F. Sanchez,et al.  Integral field spectroscopy of the ultraluminous X-ray source Holmberg II X-1 , 2005 .

[13]  A. Mazure,et al.  The VIMOS Integral Field Unit: Data‐Reduction Methods and Quality Assessment , 2005, astro-ph/0509454.

[14]  Lewis R. Jones,et al.  INTEGRAL: a matrix optical fiber system for WYFFOS , 1998, Astronomical Telescopes and Instrumentation.

[15]  Pieter R. Roelfsema,et al.  Astronomical Data Analysis Software and Systems I , 1992 .

[16]  A. Kelz,et al.  Spectrophotometry of Planetary Nebulae in the Bulge of M31 , 2003, astro-ph/0311407.

[17]  Oliver LeFevre,et al.  Commissioning and performances of the VLT-VIMOS , 2003, SPIE Astronomical Telescopes + Instrumentation.

[18]  Andreas Kelz,et al.  PMAS: The Potsdam Multi-Aperture Spectrophotometer. II. The Wide Integral Field Unit PPak , 2006 .

[19]  Ray M. Sharples,et al.  TEIFU: a high-resolution integral field unit for the William Herschel Telescope , 2000, Astronomical Telescopes and Instrumentation.