Design of irregular LDPC codes with optimized performance-complexity tradeoff
暂无分享,去创建一个
Wei Yu | Masoud Ardakani | Frank R. Kschischang | Benjamin P. Smith | F. Kschischang | M. Ardakani | Wei Yu | Benjamin P. Smith
[1] Robert J. McEliece,et al. On the complexity of reliable communication on the erasure channel , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).
[2] En-Hui Yang,et al. Low-density parity-check codes with fast decoding convergence speed , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..
[3] Stephan ten Brink,et al. Extrinsic information transfer functions: model and erasure channel properties , 2004, IEEE Transactions on Information Theory.
[4] Stephan ten Brink,et al. Convergence behavior of iteratively decoded parallel concatenated codes , 2001, IEEE Trans. Commun..
[5] Rüdiger L. Urbanke,et al. The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.
[6] Wei Yu,et al. Complexity-optimized low-density parity-check codes for gallager decoding algorithm B , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..
[7] Rüdiger L. Urbanke,et al. Weight Distribution of Low-Density Parity-Check Codes , 2006, IEEE Transactions on Information Theory.
[8] Rüdiger L. Urbanke,et al. Complexity versus performance of capacity-achieving irregular repeat-accumulate codes on the binary erasure channel , 2004, IEEE Transactions on Information Theory.
[9] Daniel A. Spielman,et al. Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.
[10] Daniel A. Spielman,et al. Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).
[11] Evangelos Eleftheriou,et al. Regular and irregular progressive edge-growth tanner graphs , 2005, IEEE Transactions on Information Theory.
[12] M. Aminshokrollahi. New sequences of linear time erasure codes approaching the channel capacity , 1999 .
[13] Rüdiger L. Urbanke,et al. Capacity-achieving ensembles for the binary erasure channel with bounded complexity , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..
[14] Daniel J. Costello,et al. Channel coding: The road to channel capacity , 2006, Proceedings of the IEEE.
[15] Rüdiger L. Urbanke,et al. Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.
[16] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[17] Stephan ten Brink,et al. Design of low-density parity-check codes for modulation and detection , 2004, IEEE Transactions on Communications.
[18] Rüdiger L. Urbanke,et al. Efficient encoding of low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.
[19] L. Bazzi,et al. Exact thresholds and optimal codes for the binary symmetric channel and Gallager's decoding algorithm A , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).
[20] Igal Sason,et al. Accumulate–Repeat–Accumulate Codes: Capacity-Achieving Ensembles of Systematic Codes for the Erasure Channel With Bounded Complexity , 2007, IEEE Transactions on Information Theory.
[21] Masoud Ardakani,et al. EXIT-chart properties of the highest-rate LDPC code with desired convergence behavior , 2005, IEEE Communications Letters.
[22] Sae-Young Chung,et al. On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit , 2001, IEEE Communications Letters.
[23] Rüdiger L. Urbanke,et al. Modern Coding Theory , 2008 .
[24] X. Jin. Factor graphs and the Sum-Product Algorithm , 2002 .
[25] Robert G. Gallager,et al. Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.
[26] Rüdiger L. Urbanke,et al. Parity-check density versus performance of binary linear block codes over memoryless symmetric channels , 2003, IEEE Transactions on Information Theory.
[27] Igal Sason,et al. Bounds on the number of iterations for turbo-like ensembles over the binary erasure channel , 2009, IEEE Trans. Inf. Theory.
[28] Sae-Young Chung,et al. Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation , 2001, IEEE Trans. Inf. Theory.
[29] Stephan ten Brink,et al. Design of repeat-accumulate codes for iterative detection and decoding , 2003, IEEE Trans. Signal Process..
[30] Simon Litsyn,et al. Constructing LDPC codes by error minimization progressive edge growth , 2008, IEEE Transactions on Communications.
[31] Masoud Ardakani,et al. A more accurate one-dimensional analysis and design of irregular LDPC codes , 2004, IEEE Transactions on Communications.
[32] Alon Orlitsky,et al. Stopping set distribution of LDPC code ensembles , 2003, IEEE Transactions on Information Theory.