Design of irregular LDPC codes with optimized performance-complexity tradeoff

The optimal performance-complexity tradeoff for error-correcting codes at rates strictly below the Shannon limit is a central question in coding theory. This paper proposes a numerical approach for the minimization of decoding complexity for long-block-length irregular low-density parity-check (LDPC) codes. The proposed design methodology is applicable to any binary-input memoryless symmetric channel and any iterative message-passing decoding algorithm with a parallel-update schedule. A key feature of the proposed optimization method is a new complexity measure that incorporates both the number of operations required to carry out a single decoding iteration and the number of iterations required for convergence. This paper shows that the proposed complexity measure can be accurately estimated from a density-evolution and extrinsic-information transfer chart analysis of the code. A sufficient condition is presented for convexity of the complexity measure in the variable edge-degree distribution; when it is not satisfied, numerical experiments nevertheless suggest that the local minimum is unique. The results presented herein show that when the decoding complexity is constrained, the complexity-optimized codes significantly outperform threshold-optimized codes at long block lengths, within the ensemble of irregular codes.

[1]  Robert J. McEliece,et al.  On the complexity of reliable communication on the erasure channel , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[2]  En-Hui Yang,et al.  Low-density parity-check codes with fast decoding convergence speed , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[3]  Stephan ten Brink,et al.  Extrinsic information transfer functions: model and erasure channel properties , 2004, IEEE Transactions on Information Theory.

[4]  Stephan ten Brink,et al.  Convergence behavior of iteratively decoded parallel concatenated codes , 2001, IEEE Trans. Commun..

[5]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[6]  Wei Yu,et al.  Complexity-optimized low-density parity-check codes for gallager decoding algorithm B , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[7]  Rüdiger L. Urbanke,et al.  Weight Distribution of Low-Density Parity-Check Codes , 2006, IEEE Transactions on Information Theory.

[8]  Rüdiger L. Urbanke,et al.  Complexity versus performance of capacity-achieving irregular repeat-accumulate codes on the binary erasure channel , 2004, IEEE Transactions on Information Theory.

[9]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.

[10]  Daniel A. Spielman,et al.  Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[11]  Evangelos Eleftheriou,et al.  Regular and irregular progressive edge-growth tanner graphs , 2005, IEEE Transactions on Information Theory.

[12]  M. Aminshokrollahi New sequences of linear time erasure codes approaching the channel capacity , 1999 .

[13]  Rüdiger L. Urbanke,et al.  Capacity-achieving ensembles for the binary erasure channel with bounded complexity , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[14]  Daniel J. Costello,et al.  Channel coding: The road to channel capacity , 2006, Proceedings of the IEEE.

[15]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[16]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[17]  Stephan ten Brink,et al.  Design of low-density parity-check codes for modulation and detection , 2004, IEEE Transactions on Communications.

[18]  Rüdiger L. Urbanke,et al.  Efficient encoding of low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[19]  L. Bazzi,et al.  Exact thresholds and optimal codes for the binary symmetric channel and Gallager's decoding algorithm A , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[20]  Igal Sason,et al.  Accumulate–Repeat–Accumulate Codes: Capacity-Achieving Ensembles of Systematic Codes for the Erasure Channel With Bounded Complexity , 2007, IEEE Transactions on Information Theory.

[21]  Masoud Ardakani,et al.  EXIT-chart properties of the highest-rate LDPC code with desired convergence behavior , 2005, IEEE Communications Letters.

[22]  Sae-Young Chung,et al.  On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit , 2001, IEEE Communications Letters.

[23]  Rüdiger L. Urbanke,et al.  Modern Coding Theory , 2008 .

[24]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .

[25]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[26]  Rüdiger L. Urbanke,et al.  Parity-check density versus performance of binary linear block codes over memoryless symmetric channels , 2003, IEEE Transactions on Information Theory.

[27]  Igal Sason,et al.  Bounds on the number of iterations for turbo-like ensembles over the binary erasure channel , 2009, IEEE Trans. Inf. Theory.

[28]  Sae-Young Chung,et al.  Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation , 2001, IEEE Trans. Inf. Theory.

[29]  Stephan ten Brink,et al.  Design of repeat-accumulate codes for iterative detection and decoding , 2003, IEEE Trans. Signal Process..

[30]  Simon Litsyn,et al.  Constructing LDPC codes by error minimization progressive edge growth , 2008, IEEE Transactions on Communications.

[31]  Masoud Ardakani,et al.  A more accurate one-dimensional analysis and design of irregular LDPC codes , 2004, IEEE Transactions on Communications.

[32]  Alon Orlitsky,et al.  Stopping set distribution of LDPC code ensembles , 2003, IEEE Transactions on Information Theory.