A design of non-uniform thickness mould for controlling temperature gradient and S/L interface shape in directionally solidified superalloy blade

[1]  Ruirun Chen,et al.  Influence of thermal stabilization treatment on microstructure evolution of the mushy zone and subsequent directional solidification in Ti-43Al-3Si alloy , 2016 .

[2]  Qinghua Yu,et al.  Controlling solidification front shape and thermal stress in growing quasi-single-crystal silicon ingots: Process design for seeded directional solidification , 2015 .

[3]  Ruirun Chen,et al.  Effect of growth rate on microstructure and tensile properties of Ti–45Al–2Cr–2Nb prepared by electromagnetic cold crucible directional solidification , 2015 .

[4]  Ruirun Chen,et al.  Effect of power on microstructure and mechanical properties of Ti44Al6Nb1.0Cr2.0V0.15Y0.1B alloy prepared by cold crucible directional solidification , 2015 .

[5]  Ruirun Chen,et al.  Microstructures and fracture toughness of Ti–(43–48)Al–2Cr–2Nb prepared by electromagnetic cold crucible directional solidification , 2014 .

[6]  Peter D. Lee,et al.  3-D microstructural model of freckle formation validated using in situ experiments , 2014 .

[7]  Andreas Bührig-Polaczek,et al.  The Geometrical Effect on Freckle Formation in the Directionally Solidified Superalloy CMSX-4 , 2014, Metallurgical and Materials Transactions A.

[8]  R. Singer,et al.  The effect of liquid metal cooling on thermal gradients in directional solidification of superalloys: Thermal analysis , 2013 .

[9]  Peter D. Lee,et al.  A new mechanism for freckle initiation based on microstructural level simulation , 2012 .

[10]  Dexin Ma,et al.  Application of a Heat Conductor Technique in the Production of Single-Crystal Turbine Blades , 2009 .

[11]  T. Pollock,et al.  Thermal Analysis of the Bridgman and Liquid-Metal-Cooled Directional Solidification Investment Casting Processes , 2007 .

[12]  S. Felicelli,et al.  Predicting freckle-defects in directionally solidified Pb–Sn alloys , 2002 .

[13]  M. Konter,et al.  Materials and manufacturing of advanced industrial gas turbine components , 2001 .

[14]  T. Pollock,et al.  Stabilization of thermosolutal convective instabilities in Ni-based single-crystal superalloys: Carbon additions and freckle formation , 2001 .

[15]  W. Boettinger,et al.  Development of a freckle predictor via rayleigh number method for single-crystal nickel-base superalloy castings , 2000 .

[16]  S. Cockcroft,et al.  Freckle formation and freckle criterion in superalloy castings , 2000 .

[17]  S. Felicelli,et al.  Three-dimensional simulations of freckles in binary alloys , 1998 .

[18]  Sami D. Alaruri,et al.  Effective spectral emissivity measurements of superalloys and YSZ thermal barrier coating at high temperatures using a 1.6μm single wavelength pyrometer , 1998 .

[19]  C. Gandin,et al.  Prediction of a process window for the investment casting of dendritic single crystals , 1997 .

[20]  T. Pollock,et al.  The breakdown of single-crystal solidification in high refractory nickel-base alloys , 1996 .

[21]  M. Farag,et al.  Effect of some thermal parameters on the directional solidification process , 1978 .

[22]  A. F. Giamei,et al.  Liquid metal cooling: A new solidification technique , 1976 .

[23]  Jun Zhang,et al.  High thermal gradient directional solidification and its application in the processing of nickel-based superalloys , 2010 .

[24]  L. Liu,et al.  Microstructure and stress rupture properties of single crystal superalloy CMSX-2 under high thermal gradient directional solidification , 2007 .

[25]  Robert A. Brown,et al.  Convection and segregation in directional solidification of dilute and non-dilute binary alloys: Effects of ampoule and furnace design , 1987 .

[26]  Y. Nakagawa,et al.  Heat Treatment, Microstructure, and Creep Strength of γ/γ'-α Eutectic Directionally Solidified by Fluidized Bed Quenching , 1980 .