Transition layers for singularly perturbed delay differential equations with monotone nonlinearities

Transition layers arising from square-wave-like periodic solutions of a singularly perturbed delay differential equation are studied. Such transition layers correspond to heteroclinic orbits connecting a pair of equilibria of an associated system of transition layer equations. Assuming a monotonicity condition in the nonlinearity, we prove these transition layer equations possess a unique heteroclinic orbit, and that this orbit is monotone. The proof involves a global continuation for heteroclinic orbits.