Keep Your Options Open: An Information-Based Driving Principle for Sensorimotor Systems

The central resource processed by the sensorimotor system of an organism is information. We propose an information-based quantity that allows one to characterize the efficiency of the perception-action loop of an abstract organism model. It measures the potential of the organism to imprint information on the environment via its actuators in a way that can be recaptured by its sensors, essentially quantifying the options available and visible to the organism. Various scenarios suggest that such a quantity could identify the preferred direction of evolution or adaptation of the sensorimotor loop of organisms.

[1]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[2]  Claude E. Shannon,et al.  Channels with Side Information at the Transmitter , 1958, IBM J. Res. Dev..

[3]  W. Rosenblith Sensory communication : contributions to the Symposium on Principles of Sensory Communication, July 19-August 1, 1959, Endicott House, M.I.T. , 1964 .

[4]  Viktor Mikhaĭlovich Glushkov,et al.  An Introduction to Cybernetics , 1957, The Mathematical Gazette.

[5]  Richard E. Blahut,et al.  Computation of channel capacity and rate-distortion functions , 1972, IEEE Trans. Inf. Theory.

[6]  H. Maturana,et al.  Autopoiesis: the organization of living systems, its characterization and a model. , 1974, Currents in modern biology.

[7]  J. Gibson The Ecological Approach to Visual Perception , 1979 .

[8]  Ralph Linsker,et al.  Self-organization in a perceptual network , 1988, Computer.

[9]  Young,et al.  Inferring statistical complexity. , 1989, Physical review letters.

[10]  Stuart A. Kauffman,et al.  The origins of order , 1993 .

[11]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[12]  F. Varela,et al.  Toward a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life , 1992 .

[13]  G. Edelman,et al.  A measure for brain complexity: relating functional segregation and integration in the nervous system. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[15]  Risto Miikkulainen,et al.  Discovering Complex Othello Strategies through Evolutionary Neural Networks , 1995, Connect. Sci..

[16]  S. Laughlin,et al.  The rate of information transfer at graded-potential synapses , 1996, Nature.

[17]  Andrew G. Barto,et al.  Reinforcement learning , 1998 .

[18]  Rob R. de Ruyter van Steveninck,et al.  The metabolic cost of neural information , 1998, Nature Neuroscience.

[19]  J. Crutchfield,et al.  Computational Mechanics: Pattern and Prediction, Structure and Simplicity , 1999, ArXiv.

[20]  Ralf Der,et al.  Homeokinesis - A new principle to back up evolution with learning , 1999 .

[21]  Chrystopher L. Nehaniv Meaning for observers and agents , 1999, Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014).

[22]  M. Mohammadian Computational Intelligence for Modelling, Control and Automation '99 , 1999 .

[23]  William Bialek,et al.  Adaptive Rescaling Maximizes Information Transmission , 2000, Neuron.

[24]  Touchette,et al.  Information-theoretic limits of control , 1999, Physical review letters.

[25]  Peter J. B. Hancock,et al.  Information Theory and the Brain , 2000 .

[26]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[27]  P. Cariani Some epistemological implications of devices which construct their own sensors and effectors , 2000 .

[28]  Naftali Tishby,et al.  The information bottleneck method , 2000, ArXiv.

[29]  Rob R. de Ruyter van Steveninck,et al.  Coding Efficiency and the Metabolic Cost of Sensory and Neural Information , 2000, Information Theory and the Brain.

[30]  S. Laughlin Energy as a constraint on the coding and processing of sensory information , 2001, Current Opinion in Neurobiology.

[31]  Thomas Martinetz,et al.  An Information-Theoretic Approach for the Quantification of Relevance , 2001, ECAL.

[32]  C. Emmeche Does a robot have an Umwelt? Reflections on the qualitative biosemiotics of Jakob von Uexkul l , 2001 .

[33]  Adrienne L. Fairhall,et al.  Efficiency and ambiguity in an adaptive neural code , 2001, Nature.

[34]  H Barlow,et al.  Redundancy reduction revisited , 2001, Network.

[35]  Rolf Pfeifer,et al.  Embodied Artificial Intelligence: 10 Years Back, 10 Years Forward , 2001, Informatics.

[36]  Daniel Polani,et al.  Meaningful Information, Sensor Evolution, and the Temporal Horizon of Embodied Organisms , 2002 .

[37]  A. U.S.,et al.  Predictability , Complexity , and Learning , 2002 .

[38]  William H. Press,et al.  Numerical recipes in C , 2002 .

[39]  Olaf Sporns,et al.  Measuring information integration , 2003, BMC Neuroscience.

[40]  N. K. H. P. Spaink,et al.  Evolutionary Algorithms , 2000, Natural Computing Series.

[41]  Luc Steels,et al.  The Autotelic Principle , 2003, Embodied Artificial Intelligence.

[42]  Florentin Wörgötter,et al.  ISO Learning Approximates a Solution to the Inverse-Controller Problem in an Unsupervised Behavioral Paradigm , 2003, Neural Computation.

[43]  Shigeyoshi Tsutsui,et al.  Advances in Evolutionary Computing , 2003 .

[44]  Pierre-Yves Oudeyer,et al.  Maximizing Learning Progress: An Internal Reward System for Development , 2003, Embodied Artificial Intelligence.

[45]  J. Kevin O'Regan,et al.  Perception of the Structure of the Physical World Using Unknown Multimodal Sensors and Effectors , 2003, NIPS.

[46]  Giulio Sandini,et al.  Developmental robotics: a survey , 2003, Connect. Sci..

[47]  Jürgen Schmidhuber,et al.  Exploring the predictable , 2003 .

[48]  Nuttapong Chentanez,et al.  Intrinsically Motivated Reinforcement Learning , 2004, NIPS.

[49]  Phil Husbands,et al.  Tracking Information Flow through the Environment: Simple Cases of Stigmergy , 2004 .

[50]  Carl T. Bergstrom,et al.  Shannon information and biological fitness , 2004, Information Theory Workshop.

[51]  I. Harvey Homeostasis and rein control: from Daisyworld to active perception , 2004 .

[52]  Seth Lloyd,et al.  Information-theoretic approach to the study of control systems , 2001, physics/0104007.

[53]  J. Pollack,et al.  Homeostasis and Rein Control: From Daisyworld to Active Perception , 2004 .

[54]  Phil Husbands,et al.  Artificial Life IX: Proceedings of the Ninth International Conference on the Simulation and Synthesis of Living Systems , 2004 .

[55]  Lisa Meeden,et al.  Self-Motivated, Task-Independent Reinforcement Learning for Robots , 2004 .

[56]  Chrystopher L. Nehaniv,et al.  Organization of the information flow in the perception-action loop of evolved agents , 2004, Proceedings. 2004 NASA/DoD Conference on Evolvable Hardware, 2004..

[57]  Chrystopher L. Nehaniv,et al.  Tracking Information Flow through the Environment: Simple Cases of Stigmerg , 2004 .

[58]  Chrystopher L. Nehaniv,et al.  Empowerment: a universal agent-centric measure of control , 2005, 2005 IEEE Congress on Evolutionary Computation.

[59]  Chrystopher L. Nehaniv,et al.  All Else Being Equal Be Empowered , 2005, ECAL.

[60]  Deepak Kumar,et al.  BRINGING UP ROBOT: FUNDAMENTAL MECHANISMS FOR CREATING A SELF-MOTIVATED, SELF-ORGANIZING ARCHITECTURE , 2005, Cybern. Syst..

[61]  Olaf Sporns,et al.  Evolving Coordinated Behavior by Maximizing Information Structure , 2006 .

[62]  Karl J. Friston,et al.  A free energy principle for the brain , 2006, Journal of Physiology-Paris.

[63]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[64]  Dario Floreano,et al.  Artificial Life X , 2006 .

[65]  Chrystopher L. Nehaniv,et al.  Relevant information in optimized persistence vs. progeny strategies , 2006 .

[66]  Olaf Sporns,et al.  Mapping Information Flow in Sensorimotor Networks , 2006, PLoS Comput. Biol..

[67]  M. Prokopenko,et al.  Evolving Spatiotemporal Coordination in a Modular Robotic System , 2006, SAB.

[68]  J. Nadal Information Transmission by Networks of Non Linear Neurons , 2007 .

[69]  Massimo Vergassola,et al.  ‘Infotaxis’ as a strategy for searching without gradients , 2007, Nature.

[70]  Olaf Sporns,et al.  Methods for quantifying the informational structure of sensory and motor data , 2007, Neuroinformatics.

[71]  Chrystopher L. Nehaniv,et al.  Representations of Space and Time in the Maximization of Information Flow in the Perception-Action Loop , 2007, Neural Computation.

[72]  S. F. Taylor,et al.  Information and fitness , 2007, 0712.4382.

[73]  Chrystopher L. Nehaniv,et al.  On Preferred States of Agents - how Global Structure is reflected in Local Structure , 2008, ALIFE.

[74]  Eckehard Olbrich,et al.  Autonomy: An information theoretic perspective , 2008, Biosyst..

[75]  Ralf Der,et al.  Predictive information and explorative behavior of autonomous robots , 2008 .

[76]  Daniel Polani,et al.  Information Flows in Causal Networks , 2008, Adv. Complex Syst..