Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms

I. Mathematical Foundation of the Stokes Problem.- 1. Generalities on Some Elliptic Boundary Value Problems.- 1.1. Basic Concepts on Sobolev Spaces.- 1.2. Abstract Elliptic Theory.- 1.3. Example 1: Dirichlet's Problem for the Laplace Operator.- 1.4. Example 2: Neumann's Problem for the Laplace Operator.- 1.5. Example 3: Dirichlet's Problem for the Biharmonic Operator.- 2. Function Spaces for the Stokes Problem.- 2.1. Preliminary Results.- 2.2. Some Properties of Spaces Related to the Divergence Operator.- 2.3. Some Properties of Spaces Related to the Curl Operator.- 3. A Decomposition of Vector Fields.- 3.1. Decomposition of Two-Dimensional Vector Fields.- 3.2. Application to the Regularity of Functions of H(div ?) ? H(curl ?).- 3.3. Decomposition of Three-Dimensional Vector Fields.- 3.4. The Imbedding of H(div ?) ? H0 (curl ?) into H1(?)3.- 3.5. The Imbedding of H0(div ?) ? H (curl ?) into H1(?)3.- 4. Analysis of an Abstract Variational Problem.- 4.1. A General Result.- 4.2. A Saddle-Point Approach.- 4.3. Approximation by Regularization or Penalty.- 4.4. Iterative Methods of Gradient Type.- 5. The Stokes Equations.- 5.1. The Dirichlet Problem in the Velocity-Pressure Formulation.- 5.2. The Stream Function Formulation of the Dirichlet Problem in Two Dimensions.- 5.3. The Three-Dimensional Case.- Appendix A. Results of Standard Finite Element Approximation.- A.l. Triangular Finite Elements.- A.2. Quadrilateral Finite Elements.- A.3. Interpolation of Discontinuous Functions.- II. Numerical Solution of the Stokes Problem in the Primitive Variables.- 1. General Approximation.- 1.1. An Abstract Approximation Result.- 1.2. Decoupling the Computation of uh and ?h.- 1.3. Application to the Homogeneous Stokes Problem.- 1.4. Checking the inf-sup Condition.- 2. Simplicial Finite Element Methods Using Discontinuous Pressures.- 2.1. A First Order Approximation on Triangular Elements.- 2.2. Higher-Order Approximation on Triangular Elements.- 2.3. The Three-Dimensional case: First and Higher-Order Schemes.- 3. Quadrilateral Finite Element Methods Using Discontinuous Pressures.- 3.1. A quadrilateral Finite Element of Order One.- 3.2. Higher-Order Quadrilateral Elements.- 3.3. An Example of Checkerboard Instability: the Q1 - P0 Element.- 3.4. Error Estimates for the Q1 - P0 Element.- 4. Continuous Approximation of the Pressure.- 4.1. A First Order Method: the "Mini" Finite Element.- 4.2. The "Hood-Taylor" Finite Element Method.- 4.3. The "Glowinski-Pironneau" Finite Element Method.- 4.4. Implementation of the Glowinski-Pironneau Scheme.- III. Incompressible Mixed Finite Element Methods for Solving the Stokes Problem.- 1. Mixed Approximation of an Abstract Problem.- 1.1. A Mixed Variational Problem.- 1.2. Abstract Mixed Approximation.- 2. The "Stream Function-Vorticity-Pressure" Method for the Stokes Problem in Two Dimensions.- 2.1. A Mixed Formulation.- 2.2. Mixed Approximation and Application to Finite Elements of Degree l.- 2.3. The Technique of Mesh-Dependent Norms.- 3. Further Topics on the "Stream Function-Vorticity-Pressure" Scheme.- 3.1. Refinement of the Error Analysis.- 3.2. Super Convergence Using Quadrilateral Finite Elements of Degree l.- 4. A "Stream Function-Gradient of Velocity Tensor" Method in Two Dimensions.- 4.1. The Hellan-Herrmann-Johnson Formulation.- 4.2. Approximation with Triangular Finite Elements of Degree l.- 4.3. Additional Results for the Hellan-Herrmann-Johnson Scheme.- 4.4. Discontinuous Approximation of the Pressure.- 5. A "Vector Potential-Vorticity" Scheme in Three Dimensions.- 5.1. A Mixed Formulation of the Three-Dimensional Stokes Problem.- 5.2. Mixed Approximation in H(curl ?).- 5.3. A Family of Conforming Finite Elements in H(curl ?).- 5.4. Error Analysis for Finite Elements of Degree l.- 5.5. Discontinuous Approximation of the Pressure.- IV. Theory and Approximation of the Navier-Stokes Problem.- 1. A Class of Nonlinear Problems.- s Problem for the Laplace Operator.- 1.5. Example 3: Dirichlet's Problem for the Biharmonic Operator.- 2. Function Spaces for the Stokes Problem.- 2.1. Preliminary Results.- 2.2. Some Properties of Spaces Related to the Divergence Operator.- 2.3. Some Properties of Spaces Related to the Curl Operator.- 3. A Decomposition of Vector Fields.- 3.1. Decomposition of Two-Dimensional Vector Fields.- 3.2. Application to the Regularity of Functions of H(div ?) ? H(curl ?).- 3.3. Decomposition of Three-Dimensional Vector Fields.- 3.4. The Imbedding of H(div ?) ? H0 (curl ?) into H1(?)3.- 3.5. The Imbedding of H0(div ?) ? H (curl ?) into H1(?)3.- 4. Analysis of an Abstract Variational Problem.- 4.1. A General Result.- 4.2. A Saddle-Point Approach.- 4.3. Approximation by Regularization or Penalty.- 4.4. Iterative Methods of Gradient Type.- 5. The Stokes Equations.- 5.1. The Dirichlet Problem in the Velocity-Pressure Formulation.- 5.2. The Stream Function Formulation of the Dirichlet Problem in Two Dimensions.- 5.3. The Three-Dimensional Case.- Appendix A. Results of Standard Finite Element Approximation.- A.l. Triangular Finite Elements.- A.2. Quadrilateral Finite Elements.- A.3. Interpolation of Discontinuous Functions.- II. Numerical Solution of the Stokes Problem in the Primitive Variables.- 1. General Approximation.- 1.1. An Abstract Approximation Result.- 1.2. Decoupling the Computation of uh and ?h.- 1.3. Application to the Homogeneous Stokes Problem.- 1.4. Checking the inf-sup Condition.- 2. Simplicial Finite Element Methods Using Discontinuous Pressures.- 2.1. A First Order Approximation on Triangular Elements.- 2.2. Higher-Order Approximation on Triangular Elements.- 2.3. The Three-Dimensional case: First and Higher-Order Schemes.- 3. Quadrilateral Finite Element Methods Using Discontinuous Pressures.- 3.1. A quadrilateral Finite Element of Order One.- 3.2. Higher-Order Quadrilateral Elements.- 3.3. An Example of Checkerboard Instability: the Q1 - P0 Element.- 3.4. Error Estimates for the Q1 - P0 Element.- 4. Continuous Approximation of the Pressure.- 4.1. A First Order Method: the "Mini" Finite Element.- 4.2. The "Hood-Taylor" Finite Element Method.- 4.3. The "Glowinski-Pironneau" Finite Element Method.- 4.4. Implementation of the Glowinski-Pironneau Scheme.- III. Incompressible Mixed Finite Element Methods for Solving the Stokes Problem.- 1. Mixed Approximation of an Abstract Problem.- 1.1. A Mixed Variational Problem.- 1.2. Abstract Mixed Approximation.- 2. The "Stream Function-Vorticity-Pressure" Method for the Stokes Problem in Two Dimensions.- 2.1. A Mixed Formulation.- 2.2. Mixed Approximation and Application to Finite Elements of Degree l.- 2.3. The Technique of Mesh-Dependent Norms.- 3. Further Topics on the "Stream Function-Vorticity-Pressure" Scheme.- 3.1. Refinement of the Error Analysis.- 3.2. Super Convergence Using Quadrilateral Finite Elements of Degree l.- 4. A "Stream Function-Gradient of Velocity Tensor" Method in Two Dimensions.- 4.1. The Hellan-Herrmann-Johnson Formulation.- 4.2. Approximation with Triangular Finite Elements of Degree l.- 4.3. Additional Results for the Hellan-Herrmann-Johnson Scheme.- 4.4. Discontinuous Approximation of the Pressure.- 5. A "Vector Potential-Vorticity" Scheme in Three Dimensions.- 5.1. A Mixed Formulation of the Three-Dimensional Stokes Problem.- 5.2. Mixed Approximation in H(curl ?).- 5.3. A Family of Conforming Finite Elements in H(curl ?).- 5.4. Error Analysis for Finite Elements of Degree l.- 5.5. Discontinuous Approximation of the Pressure.- IV. Theory and Approximation of the Navier-Stokes Problem.- 1. A Class of Nonlinear Problems.- 2. Theory of the Steady-State Navier-Stokes Equations.- 2.1. The Dirichlet Problem in the Velocity-Pressure Formulation.- 2.2. The Stream Function Formulation of the Homogeneous Problem..- 3. Approximation of Branches of Nonsingular Solutions.- 3.1. An Abstract Framework.- 3.2. Approximation of Branches of Nonsingular Solutions.- 3.3. Application to a Class of Nonlinear Problems.- 3.4. Non-Differentiable Approximation of Branches of Nonsingular Solutions.- 4. Numerical Analysis of Centered Finite Element Schemes.- 4.1. Formulation in Primitive Variables: Methods Using Discontinuous Pressures.- 4.2. Formulation in Primitive Variables: the Case of Continuous Pressures.- 4.3. Mixed Incompressible Methods: the "Stream Function-Vorticity" Formulation.- 4.4. Remarks on the "Stream Function-Gradient of Velocity Tensor" Scheme.- 5. Numerical Analysis of Upwind Schemes.- 5.1. Upwinding in the Stream Function-Vorticity Scheme.- 5.2. Error Analysis of the Upwind Scheme.- 5.3. Approximating the Pressure with the Upwind Scheme.- 6. Numerical Algorithms.- 2.11. General Methods of Descent and Application to Gradient Methods.- 2.12. Least-Squares and Gradient Methods to Solve the Navier-Stokes Equations.- 2.13. Newton's Method and the Continuation Method.- References.- Index of Mathematical Symbols.