Sub-dB/cm propagation loss in silver stripe waveguides.

We demonstrate sub-dB/cm propagation losses in polymer-based silver stripe waveguides at the wavelength of 1.31 microm. The silver stripe waveguides were fabricated in a low-loss fluorinated polymer clad. To form uniform metal stripe patterns, which are essential for reducing propagation loss, we developed a lift-off process using double layers of photoresist and SiNx. A propagation loss of less than 1.0 dB/cm was obtained with the 11- nm-thick silver stripes in the width range of 1.5 - 4.5 microm. A coupling loss of approximately 1.0 dB with a polarization maintaining single mode fiber was achieved for a width of 4.5 microm. For a width of 2.0 microm, we recorded a minimum propagation loss of 0.4 dB/cm, which is comparable with that of dielectric multi-mode waveguides.

[1]  Seok Ho Song,et al.  Polymeric variable optical attenuator based on long range surface plasmon polaritons , 2006 .

[2]  K. Kjaer,et al.  Integrated optical components utilizing long-range surface plasmon polaritons , 2005, Journal of Lightwave Technology.

[3]  S. Bozhevolnyi,et al.  Surface plasmon polariton based modulators and switches operating at telecom wavelengths , 2004 .

[4]  Suntak Park,et al.  Vertical coupling of long-range surface plasmon polaritons , 2006 .

[5]  Sergey I. Bozhevolnyi,et al.  Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths , 2003 .

[6]  Sergey I. Bozhevolnyi,et al.  In-line extinction modulator based on long-range surface plasmon polaritons , 2005 .

[7]  Jung Jin Ju,et al.  10 Gbps Optical Signal Transmission via Long-Range Surface Plasmon Polariton Waveguide , 2007 .

[8]  P. Berini Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures , 2000 .

[9]  Suntak Park,et al.  Long-range surface plasmon polaritons on asymmetric double-electrode structures , 2008 .

[10]  C. Callender,et al.  Long-range surface plasmon polariton waveguides embedded in fluorinated polymer. , 2008, Applied optics.

[11]  P. Berini,et al.  Long-range surface plasmons on ultrathin membranes. , 2007, Nano letters.

[12]  Suntak Park,et al.  40Gbit∕s light signal transmission in long-range surface plasmon waveguides , 2007 .

[13]  P. Berini,et al.  Passive integrated optics elements based on long-range surface plasmon polaritons , 2006, Journal of Lightwave Technology.

[14]  A. Boltasseva,et al.  Compact Bragg gratings for long-range surface plasmon polaritons , 2006, Journal of Lightwave Technology.

[15]  P. Berini,et al.  Thermally Activated Variable Attenuation of Long-Range Surface Plasmon-Polariton Waves , 2006, Journal of Lightwave Technology.

[16]  Yidong Huang,et al.  Asymmetric hybrid three-arm coupler with long range surface plasmon polariton and dielectric waveguides , 2007, 2007 Asia Optical Fiber Communication and Optoelectronics Conference.

[17]  Jung Jin Ju,et al.  Low-Loss Polymer-Based Long-Range Surface Plasmon-Polariton Waveguide , 2007, IEEE Photonics Technology Letters.

[18]  A. Boltasseva,et al.  Directional Couplers Using Long-Range Surface Plasmon Polariton Waveguides , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[19]  Pierre Berini,et al.  Characterization of long-range surface-plasmon-polariton waveguides , 2005 .

[20]  Suntak Park,et al.  Long range surface plasmon polariton waveguides at 1.31 and 1.55 μm wavelengths , 2008 .