The point spectrum of Frobenius-Perron and Koopman operators

We present some results on the point spectrum of the FrobeniusPerron operator P: L1 -+ L1 and the Koopman operator U: L? Lo associated with a nonsingular transformation S: X -+ X on a a-finite measure space (X,E,,t).

[1]  Chichia Chiu,et al.  Error estimates of the Markov finite approximation of the Frobenius-Perron operator , 1992 .

[2]  Jiu Ding Decomposition theorems for Koopman operators , 1997 .

[3]  H. H. Schaefer Banach Lattices and Positive Operators , 1975 .

[4]  Qiang Du,et al.  High order approximation of the Frobenius-Perron operator , 1993 .

[5]  J. Craggs Applied Mathematical Sciences , 1973 .

[6]  C. Beck,et al.  Thermodynamics of chaotic systems : an introduction , 1993 .

[7]  R. Høegh-Krohn,et al.  Spectral Properties of Positive Maps on C*‐Algebras , 1978 .

[8]  P. Walters Introduction to Ergodic Theory , 1977 .

[9]  M. Fannes,et al.  Finitely correlated states on quantum spin chains , 1992 .

[10]  Tien-Yien Li Finite approximation for the Frobenius-Perron operator. A solution to Ulam's conjecture , 1976 .

[11]  Tien Yien Li,et al.  A convergence rate analysis for Markov finite approximations to a class of Frobenius-Perron operators , 1998 .

[12]  Michael C. Mackey,et al.  Chaos, Fractals, and Noise , 1994 .

[13]  C. Beck,et al.  Thermodynamics of chaotic systems , 1993 .

[14]  Sergio Albeverio,et al.  Frobenius theory for positive maps of von Neumann algebras , 1978 .

[15]  J. Schwartz,et al.  Linear Operators. Part I: General Theory. , 1960 .

[16]  J. F. C. Kingman,et al.  The ergodic theory of Markov processes , 1971, The Mathematical Gazette.

[17]  Barry Simon,et al.  Topics in Ergodic Theory , 1994 .

[18]  S. Ulam A collection of mathematical problems , 1960 .

[19]  F. Hunt,et al.  On the approximation of invariant measures , 1992 .

[20]  Qiang Du,et al.  The Spectral Analysis of Frobenius Perron Operators , 1994 .

[21]  Jiu Ding,et al.  A New Approach to Frobenius-Perron Operators , 1994 .