On the classification of gradient Ricci solitons
暂无分享,去创建一个
[1] Jeff Cheeger,et al. Lower bounds on Ricci curvature and the almost rigidity of warped products , 1996 .
[2] Compact gradient shrinking Ricci solitons with positive curvature operator , 2006, math/0601599.
[3] On the long-time behavior of type-III Ricci flow solutions , 2005, math/0509639.
[4] Brett L. Kotschwar. On rotationally invariant shrinking Ricci solitons , 2008 .
[5] R. Hamilton,et al. The formations of singularities in the Ricci Flow , 1993 .
[6] A. Lichnerowicz. Variétés kählériennes à première classe de Chern non negative et variétés riemanniennes à courbure de Ricci généralisée non negative , 1971 .
[7] Robert McOwen,et al. Partial differential equations : methods and applications , 1996 .
[8] W. Wylie. Complete Shrinking Ricci Solitons have Finite Fundamental Group , 2007, 0704.0317.
[9] Ricci solitons: the equation point of view , 2006, math/0607546.
[10] T. Ivey. Ricci solitons on compact three-manifolds , 1993 .
[11] R. Hamilton. Three-manifolds with positive Ricci curvature , 1982 .
[12] Manifolds with positive curvature operators are space forms , 2006, math/0606187.
[13] C. Mantegazza,et al. Evolution of the Weyl Tensor under the Ricci Flow , 2009, 0910.4761.
[14] H. Cao. Recent Progress on Ricci Solitons , 2009, 0908.2006.
[15] E. Calabi. An extension of E. Hopf’s maximum principle with an application to Riemannian geometry , 1958 .
[16] P. Baird,et al. Three-dimensional Ricci solitons which project to surfaces , 2005, math/0510313.
[17] B. Chow,et al. Hamilton's Ricci Flow , 2018 .
[18] R. Greene,et al. $C^\infty $ approximations of convex, subharmonic, and plurisubharmonic functions , 1979 .
[19] P. Petersen,et al. RIGIDITY OF GRADIENT RICCI SOLITONS , 2007, 0710.3174.
[20] Guofang Wei,et al. Comparison geometry for the Bakry-Emery Ricci tensor , 2007, 0706.1120.
[21] P. Lu,et al. A note on uniformization of riemann surfaces by ricci flow , 2005, math/0505163.
[22] Richard S. Hamilton,et al. The Ricci flow on surfaces , 1986 .
[23] William Wylie,et al. On Gradient Ricci Solitons with Symmetry , 2007, 0710.3595.
[24] R. Hamilton. Four-manifolds with positive curvature operator , 1986 .
[25] Frank Morgan,et al. Manifolds with Density , 2005 .
[26] Jorge Lauret,et al. Ricci soliton homogeneous nilmanifolds , 2001 .
[27] B. Chow,et al. The Ricci Flow : An Introduction I , 2013 .
[28] A. Naber. Noncompact Shrinking 4-Solitons with Nonnegative Curvature , 2007, 0710.5579.
[29] Haiwen Chen. Pointwise 1/4-pinched 4-manifolds , 1991 .
[30] C. Böhm,et al. Nonnegatively Curved Manifolds with Finite Fundamental Groups Admit Metrics with Positive Ricci Curvature , 2007 .
[31] A. Naber. Noncompact shrinking four solitons with nonnegative curvature , 2010 .
[32] H. W. Brinkmann. Einstein spaces which are mapped conformally on each other , 1925 .
[33] Xiaodong Cao,et al. On Locally Conformally Flat Gradient Shrinking Ricci Solitons , 2008, 0807.0588.
[34] Zhu-Hong Zhang,et al. GRADIENT SHRINKING SOLITONS WITH VANISHING WEYL TENSOR , 2008, 0807.1582.
[35] N. Wallach,et al. On a classification of the gradient shrinking solitons , 2007, 0710.3194.
[36] G. Perelman. Ricci flow with surgery on three-manifolds , 2003, math/0303109.
[37] B. Chow,et al. The Ricci flow on surfaces , 2004 .
[38] R. McOwen. Partial differential equations , 1995 .
[39] G. Perelman. The entropy formula for the Ricci flow and its geometric applications , 2002, math/0211159.