Integrability Conditions for Lotka-Volterra Planar Complex Quartic Systems Having Homogeneous Nonlinearities

In this paper we investigate the integrability problem for the two-dimensional Lotka-Volterra complex quartic systems which are linear systems perturbed by fourth degree homogeneous polynomials, that is, we consider systems of the form $\dot{x}=x(1-a_{30}x^{3}-a_{21} x^{2} y-a_{12}x y^{2} -a_{03}y^{3})$, $\dot{y}=-y(1-b_{30}x^{3}-b_{21} x^{2} y-b_{12}x y^{2}-b_{03} y^{3})$. Conditions for the integrability of this system are found. From them the center conditions for corresponding real system can be derived. The study relays on making use of algorithms of computational algebra based on the Groebner basis theory. To simplify laborious manipulations with polynomial modular arithmetics is involved.

[1]  J. Giné,et al.  Integrability of a linear center perturbed by a fifth degree homogeneous polynomial , 1997 .

[2]  Jaume Giné,et al.  On the Integrability of Two-Dimensional Flows , 1999 .

[3]  Valery G. Romanovski,et al.  Linearizability conditions of time-reversible quartic systems having homogeneous nonlinearities , 2008 .

[4]  Valery G. Romanovski,et al.  Linearizability of linear systems perturbed by fifth degree homogeneous polynomials , 2007 .

[5]  Jaume Giné,et al.  Isochronous centers of a linear center perturbed by fourth degree homogeneous polynomial , 1999 .

[6]  Jaume Giné,et al.  Integrability Conditions for Lotka-Volterra Planar Complex Quartic Systems Having Homogeneous Nonlinearities , 2011, Acta Applicandae Mathematicae.

[7]  Christiane Rousseau,et al.  Normalizable, Integrable, and Linearizable Saddle Points for Complex Quadratic Systems in $$\mathbb{C}^2 $$ , 2003 .

[8]  Jaume Giné,et al.  Integrability of a linear center perturbed by a fourth degree homogeneous polynomial , 1996 .

[9]  Luisa Mazzi,et al.  On the existence of global first integrals in the plane , 1993 .

[10]  Victor F. Edneral,et al.  Computer evaluation of cyclicity in planar cubic system , 1997, ISSAC.

[11]  J.-P. Francoise,et al.  LES CONDITIONS DU CENTRE POUR UN CHAMP DE VECTEURS QUADRATIQUE , 1994 .

[12]  Jaume Giné,et al.  Integrability conditions for Lotka–Volterra planar complex quintic systems , 2010 .

[13]  Jaume Giné,et al.  Darboux integrability and the inverse integrating factor , 2003 .

[14]  V. Fernández,et al.  Centre and isochronicity conditions for systems with homogeneous nonlinearities , 1995 .

[15]  Hans Schönemann,et al.  SINGULAR: a computer algebra system for polynomial computations , 2001, ACCA.

[16]  Jean-Charles Faugère,et al.  FGb: A Library for Computing Gröbner Bases , 2010, ICMS.

[17]  Valery G. Romanovski,et al.  The Center and Cyclicity Problems: A Computational Algebra Approach , 2009 .

[18]  Dumitru Cozma The Problem of the Centre for Cubic Systems with Two Parallel Invariant Straight Lines and One Invariant Conic , 2009 .

[19]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[20]  C. Rousseau,et al.  Nondegenerate linearizable centres of complex planar quadratic and symmetric cubic systems in $\mathbb{C}^2$ , 2001 .

[21]  Jaume Giné,et al.  Isochronous centers of a linear center perturbed by fifth degree homogeneous polynomials , 2000 .

[22]  James H. Davenport,et al.  P-adic reconstruction of rational numbers , 1982, SIGS.

[23]  Liu Yi-Reng,et al.  THEORY OF VALUES OF SINGULAR POINT IN COMPLEX AUTONOMOUS DIFFERENTIAL SYSTEMS , 1990 .

[24]  Noel G. Lloyd,et al.  A cubic Kolmogorov system with six limit cycles , 2002 .

[25]  Carmen Chicone,et al.  Bifurcation of Limit Cycles from Quadratic Isochrones , 1991 .

[26]  Patrizia M. Gianni,et al.  Gröbner Bases and Primary Decomposition of Polynomial Ideals , 1988, J. Symb. Comput..