2.23 GHz gating InGaAs/InP single-photon avalanche diode for quantum key distribution

We implement an InGaAs/InP single-photon avalanche diode (SPAD) for single-photon detection with the fastest gating frequency reported so far, of 2.23GHz, which approaches the limit given by the bandwidth of the SPAD - 2.5 GHz. We propose a useful way to characterize the afterpulsing distribution for rapid gating that allows for easy comparison with conventional gating regimes. We compare the performance of this rapid gating scheme with free-running detector and superconducting single-photon detector (SSPD) for the coherent one-way quantum key distribution (QKD) protocol. The rapid gating system is well suited for both high-rate and long-distance QKD applications, in which Mbps key rates can be achieved for distances less than 40km with 50 ns deadtime and the maximum distance is limited to ~190km with 5 μs deadtime. These results illustrate that the afterpulsing is no longer a limiting factor for QKD.

[1]  N. Gisin,et al.  Continuous high speed coherent one-way quantum key distribution. , 2009, Optics express.

[2]  N. Namekata,et al.  800 MHz single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating. , 2006, Optics express.

[3]  Jun Zhang,et al.  Comprehensive Characterization of InGaAs–InP Avalanche Photodiodes at 1550 nm With an Active Quenching ASIC , 2008, IEEE Journal of Quantum Electronics.

[4]  Naoto Namekata,et al.  1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode. , 2009, Optics express.

[5]  A. R. Dixon,et al.  Ultrashort dead time of photon-counting InGaAs avalanche photodiodes , 2009, 0905.2931.

[6]  A. Tosi,et al.  Single photon avalanche diodes (SPADs) for 1.5 μm photon counting applications , 2007 .

[7]  Jian-Wei Pan,et al.  Decoy-state quantum key distribution with polarized photons over 200 km. , 2010, Optics express.

[8]  N. Gisin,et al.  Performance of InGaAs/InP Avalanche Photodiodes as Gated-Mode Photon Counters. , 1998, Applied optics.

[9]  N. Gisin,et al.  High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres , 2009, 0903.3907.

[10]  J. Dynes,et al.  Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate. , 2008, Optics express.

[11]  Jun Zhang,et al.  Photon Counting OTDR: Advantages and Limitations , 2010, Journal of Lightwave Technology.

[12]  A. W. Sharpe,et al.  High speed single photon detection in the near-infrared , 2007, 0707.4307.

[13]  Hiroki Takesue,et al.  Differential phase shift quantum key distribution using single-photon detectors based on a sinusoidally gated InGaAs∕InP avalanche photodiode , 2007 .

[14]  H. Zbinden,et al.  Free-running InGaAs/InP Avalanche Photodiode with Active Quenching for Single Photon Counting at Telecom Wavelengths , 2007, 0801.3899.

[15]  Jun Zhang,et al.  Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes , 2009, 0908.2230.

[16]  Sae Woo Nam,et al.  Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors , 2007, 0706.0397.

[17]  A. Lacaita,et al.  Avalanche photodiodes and quenching circuits for single-photon detection. , 1996, Applied optics.

[18]  Jian Wang,et al.  Decoy-state quantum key distribution with polarized photons over 200 km. , 2009, Optics express.

[19]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[20]  O. Okunev,et al.  Picosecond superconducting single-photon optical detector , 2001 .