An Approach for Subpixel Anomaly Detection in Hyperspectral Images

Fast detecting difficult targets such as subpixel objects is a fundamental challenge for anomaly detection (AD) in hyperspectral images. In an attempt to solve this problem, this paper presents a novel but simple approach based on selecting a single feature for which the anomaly value is the maximum. The proposed approach applied in the original feature space has been evaluated and compared with relevant state-of-the-art AD methods on Target Detection Blind Test data sets. Preliminary results suggest that the proposed method can achieve better detection performance than its counterparts. The results also show that the proposed method is computationally expedient.

[1]  Xiaoli Yu,et al.  Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution , 1990, IEEE Trans. Acoust. Speech Signal Process..

[2]  David W. Messinger,et al.  Anomaly detection using topology , 2007, SPIE Defense + Commercial Sensing.

[3]  John P. Kerekes,et al.  Development of a Web-Based Application to Evaluate Target Finding Algorithms , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[4]  John P. Kerekes,et al.  Unresolved target detection blind test project overview , 2010, Defense + Commercial Sensing.

[5]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2004 .

[6]  Dalton Souza Rosario Algorithm Development for Hyperspectral Anomaly Detection , 2008 .

[7]  Saeid Homayouni,et al.  Anomaly Detection in Hyperspectral Images Based on an Adaptive Support Vector Method , 2011, IEEE Geoscience and Remote Sensing Letters.

[8]  Nasser M. Nasrabadi,et al.  Regularization for spectral matched filter and RX anomaly detector , 2008, SPIE Defense + Commercial Sensing.

[9]  Stanley R. Rotman,et al.  Algorithms for point target detection in hyperspectral imagery , 2002, SPIE Optics + Photonics.

[10]  José M. Bioucas-Dias,et al.  Hyperspectral Subspace Identification , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[11]  S Matteoli,et al.  A tutorial overview of anomaly detection in hyperspectral images , 2010, IEEE Aerospace and Electronic Systems Magazine.

[12]  Amit Banerjee,et al.  A support vector method for anomaly detection in hyperspectral imagery , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[13]  David W. Messinger,et al.  Enhanced detection and visualization of anomalies in spectral imagery , 2009, Defense + Commercial Sensing.

[14]  Dimitris G. Manolakis,et al.  Detection algorithms for hyperspectral imaging applications , 2002, IEEE Signal Process. Mag..

[15]  Yi-Hung Liu,et al.  Fast Support Vector Data Descriptions for Novelty Detection , 2010, IEEE Transactions on Neural Networks.

[16]  John R. Schott,et al.  Comparison of basis-vector selection methods for target and background subspaces as applied to subpixel target detection , 2004, SPIE Defense + Commercial Sensing.

[17]  Antonio J. Plaza,et al.  Fast anomaly detection in hyperspectral images with RX method on heterogeneous clusters , 2011, The Journal of Supercomputing.

[18]  Heesung Kwon,et al.  Dual-window-based anomaly detection for hyperspectral imagery , 2003, SPIE Defense + Commercial Sensing.

[19]  Stefania Matteoli,et al.  Improved estimation of local background covariance matrix for anomaly detection in hyperspectral images , 2010 .

[20]  José M. F. Moura,et al.  Efficient detection in hyperspectral imagery , 2001, IEEE Trans. Image Process..

[21]  David W. Messinger,et al.  Anomaly detection of man-made objects using spectropolarimetric imagery , 2011, Defense + Commercial Sensing.

[22]  Robert P. W. Duin,et al.  Support vector domain description , 1999, Pattern Recognit. Lett..

[23]  E. M. Winter,et al.  Anomaly detection from hyperspectral imagery , 2002, IEEE Signal Process. Mag..

[24]  José M. P. Nascimento,et al.  Signal subspace identification in hyperspectral imagery , 2012 .

[25]  Emmett J. Ientilucci,et al.  Hyperspectral sub-pixel target detection using hybrid algorithms and Physics Based Modeling , 2005 .

[26]  Heesung Kwon,et al.  Kernel RX-algorithm: a nonlinear anomaly detector for hyperspectral imagery , 2005, IEEE Transactions on Geoscience and Remote Sensing.