An Approach for Subpixel Anomaly Detection in Hyperspectral Images
暂无分享,去创建一个
Saeid Homayouni | Abdolreza Safari | Safa Khazai | Barat Mojaradi | Saeid Homayouni | A. Safari | B. Mojaradi | S. Khazai
[1] Xiaoli Yu,et al. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution , 1990, IEEE Trans. Acoust. Speech Signal Process..
[2] David W. Messinger,et al. Anomaly detection using topology , 2007, SPIE Defense + Commercial Sensing.
[3] John P. Kerekes,et al. Development of a Web-Based Application to Evaluate Target Finding Algorithms , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.
[4] John P. Kerekes,et al. Unresolved target detection blind test project overview , 2010, Defense + Commercial Sensing.
[5] Nello Cristianini,et al. Kernel Methods for Pattern Analysis , 2004 .
[6] Dalton Souza Rosario. Algorithm Development for Hyperspectral Anomaly Detection , 2008 .
[7] Saeid Homayouni,et al. Anomaly Detection in Hyperspectral Images Based on an Adaptive Support Vector Method , 2011, IEEE Geoscience and Remote Sensing Letters.
[8] Nasser M. Nasrabadi,et al. Regularization for spectral matched filter and RX anomaly detector , 2008, SPIE Defense + Commercial Sensing.
[9] Stanley R. Rotman,et al. Algorithms for point target detection in hyperspectral imagery , 2002, SPIE Optics + Photonics.
[10] José M. Bioucas-Dias,et al. Hyperspectral Subspace Identification , 2008, IEEE Transactions on Geoscience and Remote Sensing.
[11] S Matteoli,et al. A tutorial overview of anomaly detection in hyperspectral images , 2010, IEEE Aerospace and Electronic Systems Magazine.
[12] Amit Banerjee,et al. A support vector method for anomaly detection in hyperspectral imagery , 2006, IEEE Transactions on Geoscience and Remote Sensing.
[13] David W. Messinger,et al. Enhanced detection and visualization of anomalies in spectral imagery , 2009, Defense + Commercial Sensing.
[14] Dimitris G. Manolakis,et al. Detection algorithms for hyperspectral imaging applications , 2002, IEEE Signal Process. Mag..
[15] Yi-Hung Liu,et al. Fast Support Vector Data Descriptions for Novelty Detection , 2010, IEEE Transactions on Neural Networks.
[16] John R. Schott,et al. Comparison of basis-vector selection methods for target and background subspaces as applied to subpixel target detection , 2004, SPIE Defense + Commercial Sensing.
[17] Antonio J. Plaza,et al. Fast anomaly detection in hyperspectral images with RX method on heterogeneous clusters , 2011, The Journal of Supercomputing.
[18] Heesung Kwon,et al. Dual-window-based anomaly detection for hyperspectral imagery , 2003, SPIE Defense + Commercial Sensing.
[19] Stefania Matteoli,et al. Improved estimation of local background covariance matrix for anomaly detection in hyperspectral images , 2010 .
[20] José M. F. Moura,et al. Efficient detection in hyperspectral imagery , 2001, IEEE Trans. Image Process..
[21] David W. Messinger,et al. Anomaly detection of man-made objects using spectropolarimetric imagery , 2011, Defense + Commercial Sensing.
[22] Robert P. W. Duin,et al. Support vector domain description , 1999, Pattern Recognit. Lett..
[23] E. M. Winter,et al. Anomaly detection from hyperspectral imagery , 2002, IEEE Signal Process. Mag..
[24] José M. P. Nascimento,et al. Signal subspace identification in hyperspectral imagery , 2012 .
[25] Emmett J. Ientilucci,et al. Hyperspectral sub-pixel target detection using hybrid algorithms and Physics Based Modeling , 2005 .
[26] Heesung Kwon,et al. Kernel RX-algorithm: a nonlinear anomaly detector for hyperspectral imagery , 2005, IEEE Transactions on Geoscience and Remote Sensing.