Development of solid-state electrolytes for sodium-ion battery–A short review

Abstract All-solid-state sodium-ion battery is regarded as the next generation battery to replace the current commercial lithium-ion battery, with the advantages of abundant sodium resources, low price and high-level safety. As one critical component in sodium-ion battery, solid-state electrolyte should possess superior operational safety and design simplicity, yet reasonable high room-temperature ionic conductivity. This paper gives a comprehensive review on the recent progress in solid-state electrolyte materials for sodium-ion battery, including inorganic ceramic/glass-ceramic, organic polymer and ceramic-polymer composite electrolytes, and also provides a comparison of the ionic conductivity in various solid-state electrolyte materials. The development of solid-state electrolytes suggests a bright future direction: all solid-state sodium-ion battery could be fully used to power all electric road vehicles, portable electronic devices and large-scale grid support.

[1]  Yutao Li,et al.  Rechargeable Sodium All-Solid-State Battery , 2017, ACS central science.

[2]  Li-Min Wang,et al.  Na3PSe4: A Novel Chalcogenide Solid Electrolyte with High Ionic Conductivity , 2015 .

[3]  Luyi Yang,et al.  Mechanisms and properties of ion-transport in inorganic solid electrolytes , 2018 .

[4]  G. Farrington,et al.  Ionic conductivity in Na+, K+, and Ag+ β″-alumina , 1980 .

[5]  J. Goodenough,et al.  A Composite Gel–Polymer/Glass–Fiber Electrolyte for Sodium‐Ion Batteries , 2015 .

[6]  F. Bella,et al.  Cellulose-based novel hybrid polymer electrolytes for green and efficient Na-ion batteries , 2015 .

[7]  A. Hayashi,et al.  High sodium ion conductivity of glass-ceramic electrolytes with cubic Na 3 PS 4 , 2014 .

[8]  M. Armand,et al.  Cation only conduction in new polymer–SiO2 nanohybrids: Na+ electrolytes , 2013 .

[9]  Wei Wang,et al.  Composite Polymer Electrolytes: Nanoparticles Affect Structure and Properties , 2016, Polymers.

[10]  Dingchang Lin,et al.  Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires , 2017, Nature Energy.

[11]  M. Ratner,et al.  Polymer Electrolytes: Ionic Transport Mechanisms and Relaxation Coupling , 2000 .

[12]  Feng Wu,et al.  Hard Carbon Anode Materials for Sodium-Ion Batteries , 2018, Functional Materials for Next-Generation Rechargeable Batteries.

[13]  Manindra Kumar,et al.  Conductivity and dielectric investigation of NH4I-doped synthesized polymer electrolyte system , 2015, Ionics.

[14]  K. Abraham,et al.  Studies of some poly(vinylidene fluoride) electrolytes , 1997 .

[15]  S. Han,et al.  Effects of calcium impurity on phase relationship, ionic conductivity and microstructure of Na+- β / β″-alumina solid electrolyte , 2016, Bulletin of Materials Science.

[16]  Candace K. Chan,et al.  Composite Polymer Electrolytes with Li7La3Zr2O12 Garnet-Type Nanowires as Ceramic Fillers: Mechanism of Conductivity Enhancement and Role of Doping and Morphology. , 2017, ACS applied materials & interfaces.

[17]  Aninda J. Bhattacharyya,et al.  Increasing ionic conductivity of polymer–sodium salt complex by addition of a non-ionic plastic crystal , 2010 .

[18]  A. Hayashi,et al.  Sulfide Solid Electrolyte with Favorable Mechanical Property for All-Solid-State Lithium Battery , 2013, Scientific Reports.

[19]  Krishnaswamy Hariharan,et al.  Composite polymer electrolyte based on (PEO)6:NaPO3 dispersed with BaTiO3 , 2008 .

[20]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[21]  Weihua Chen,et al.  Novel safer phosphonate-based gel polymer electrolytes for sodium-ion batteries with excellent cycling performance , 2018 .

[22]  Michel Ribes,et al.  Sulfide glasses: Glass forming region, structure and ionic conduction of glasses in Na2SXS2 (XSi; Ge), Na2SP2S5 and Li2SGeS2 systems , 1980 .

[23]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[24]  F. Bella,et al.  Photopolymer Electrolytes for Sustainable, Upscalable, Safe, and Ambient-Temperature Sodium-Ion Secondary Batteries. , 2015, ChemSusChem.

[25]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[26]  H. Moon,et al.  Role of functional nano-sized inorganic fillers in poly(ethylene) oxide-based polymer electrolytes , 2003 .

[27]  M. Armand,et al.  Composite PEOn:NaTFSI polymer electrolyte: Preparation, thermal and electrochemical characterization , 2014 .

[28]  M. Anbu Kulandainathan,et al.  Characterization of poly(vinylidene fluoride–hexafluoropropylene) (PVdF–HFP) electrolytes complexed with different lithium salts , 2005 .

[29]  Shyue Ping Ong,et al.  Role of Na+ Interstitials and Dopants in Enhancing the Na+ Conductivity of the Cubic Na3PS4 Superionic Conductor , 2015 .

[30]  B. Hwang,et al.  Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries , 2015 .

[31]  R. C. Agrawal,et al.  Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview , 2008 .

[32]  Yong‐Sheng Hu,et al.  A ceramic/polymer composite solid electrolyte for sodium batteries , 2016 .

[33]  F. Ding,et al.  Suppression of Lithium Dendrite Formation by Using LAGP-PEO (LiTFSI) Composite Solid Electrolyte and Lithium Metal Anode Modified by PEO (LiTFSI) in All-Solid-State Lithium Batteries. , 2017, ACS applied materials & interfaces.

[34]  R. O. Fuentes,et al.  Reaction of NASICON with water , 2001 .

[35]  John B. Goodenough,et al.  Fast Na+-ion transport in skeleton structures , 1976 .

[36]  R. Chandrasekaran,et al.  Preparation and characterization of a new polymer electrolyte (PEO:NaClO3) for battery application , 2001 .

[37]  S. Hashmi,et al.  Ion transport and ion–filler-polymer interaction in poly(methyl methacrylate)-based, sodium ion conducting, gel polymer electrolytes dispersed with silica nanoparticles , 2010 .

[38]  J. Goodenough How we made the Li-ion rechargeable battery , 2018 .

[39]  Phl Peter Notten,et al.  All‐Solid‐State Lithium‐Ion Microbatteries: A Review of Various Three‐Dimensional Concepts , 2011 .

[40]  Teófilo Rojo,et al.  High temperature sodium batteries: status, challenges and future trends , 2013 .

[41]  Dae-Han Lee,et al.  Analysis of properties of partially stabilized zirconia-doped Na+-beta-alumina prepared by calcining-cum-sintering process , 2017 .

[42]  P. Johansson,et al.  Characterization of NaX (X: TFSI, FSI) – PEO based solid polymer electrolytes for sodium batteries , 2015 .

[43]  K. Kang,et al.  Progress in the Development of Sodium‐Ion Solid Electrolytes , 2017 .

[44]  E. Rietman,et al.  Na+ ion conductivity and crystallographic cell characterization in the Hf-nasicon system Na1+xHf2SixP3−xO12 , 1984 .

[45]  Limin Wang,et al.  Vacancy‐Contained Tetragonal Na3SbS4 Superionic Conductor , 2016, Advanced science.

[46]  Zonghai Chen,et al.  Challenges in Developing Electrodes, Electrolytes, and Diagnostics Tools to Understand and Advance Sodium‐Ion Batteries , 2018 .

[47]  Haegyeom Kim,et al.  Recent Progress in Electrode Materials for Sodium‐Ion Batteries , 2016 .

[48]  Yong‐Sheng Hu,et al.  Na 3.4 Zr 1.8 Mg 0.2 Si 2 PO 12 filled poly(ethylene oxide)/Na(CF 3 SO 2 ) 2 N as flexible composite polymer electrolyte for solid-state sodium batteries , 2017 .

[49]  K. Kiran Kumar,et al.  Investigations on the effect of complexation of NaF salt with polymer blend (PEO/PVP) electrolytes on ionic conductivity and optical energy band gaps , 2011 .

[50]  S. Sen,et al.  Fast Na-Ion Conduction in a Chalcogenide Glass–Ceramic in the Ternary System Na2Se–Ga2Se3–GeSe2 , 2014 .

[51]  B. Scrosati,et al.  Nanocomposite polymer electrolytes for lithium batteries , 1998, Nature.

[52]  S. Hashmi,et al.  Ionic liquid based sodium ion conducting gel polymer electrolytes , 2010 .

[53]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[54]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[55]  Atsushi Sakuda,et al.  Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries , 2012, Nature Communications.

[56]  J. Goodenough Challenges for Rechargeable Li Batteries , 2010 .

[57]  Jeffrey W. Fergus,et al.  Ceramic and polymeric solid electrolytes for lithium-ion batteries , 2010 .

[58]  Chenglong Zhao,et al.  Solid‐State Sodium Batteries , 2018 .

[59]  M. Vithal,et al.  A wide-ranging review on Nasicon type materials , 2011 .

[60]  S. Ong,et al.  Design principles for solid-state lithium superionic conductors. , 2015, Nature materials.

[61]  Xingyi Zhou,et al.  A 3D Nanostructured Hydrogel-Framework-Derived High-Performance Composite Polymer Lithium-Ion Electrolyte. , 2018, Angewandte Chemie.

[62]  Z. Osman,et al.  Electrical and electrochemical studies on sodium ion-based gel polymer electrolytes , 2017 .

[63]  Peter Lamp,et al.  Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. , 2015, Chemical reviews.

[64]  F. Mauvy,et al.  Reactivity of NASICON with water and interpretation of the detection limit of a NASICON based Na(+) ion selective electrode. , 1999, Talanta.

[65]  Q. Ma,et al.  Scandium-Substituted Na3Zr2(SiO4)2(PO4) Prepared by a Solution-Assisted Solid-State Reaction Method as Sodium-Ion Conductors , 2016 .

[66]  A. Martucci,et al.  Sol-gel synthesis of Na+ beta-Al2O3 powders , 2004 .

[67]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[68]  Kazunori Takada,et al.  Progress and prospective of solid-state lithium batteries , 2013 .

[69]  Jun Lu,et al.  Exceptionally High Ionic Conductivity in Na3P0.62As0.38S4 with Improved Moisture Stability for Solid‐State Sodium‐Ion Batteries , 2017, Advanced materials.

[70]  J. Ni,et al.  Carbon Nanoflakes as a Promising Anode for Sodium-Ion Batteries , 2018, Functional Materials for Next-Generation Rechargeable Batteries.

[71]  Shyue Ping Ong,et al.  Aqueous Stability of Alkali Superionic Conductors from First-Principles Calculations , 2016, Front. Energy Res..

[72]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[73]  V. Narasimha Rao,et al.  Preparation and characterization of PVP-based polymer electrolytes for solid-state battery applications , 2012, Iranian Polymer Journal.

[74]  M. Marcinek,et al.  Fluorine-free electrolytes for all-solid sodium-ion batteries based on percyano-substituted organic salts , 2017, Scientific Reports.

[75]  E. Wachsman,et al.  Structural Investigation of Monoclinic‐Rhombohedral Phase Transition in Na3Zr2Si2PO12 and Doped NASICON , 2015 .

[76]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[77]  P. V. Wright,et al.  Complexes of alkali metal ions with poly(ethylene oxide) , 1973 .

[78]  R. S. Gordon,et al.  Relative Effects of Phase Conversion and Grain Size on Sodium Ion Conduction in Polycrystalline, Lithia‐Stabilized β‐Alumina , 1978 .

[79]  S. Hashmi,et al.  Studies on poly(vinylidene fluoride-co-hexafluoropropylene) based gel electrolyte nanocomposite for sodium–sulfur batteries , 2011 .

[80]  Zhenguo Yang,et al.  Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives , 2010 .

[81]  John B. Goodenough,et al.  Review—Solid Electrolytes in Rechargeable Electrochemical Cells , 2015 .

[82]  Marie Guin,et al.  New promising NASICON material as solid electrolyte for sodium-ion batteries: Correlation between composition, crystal structure and ionic conductivity of Na3 + xSc2SixP3 − xO12 , 2016 .

[83]  M. Dissanayake,et al.  Poly-acrylonitrile-based gel-polymer electrolytes for sodium-ion batteries , 2017, Ionics.

[84]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[85]  Z. Deng,et al.  Divalent-doped Na 3 Zr 2 Si 2 PO 12 natrium superionic conductor: Improving the ionic conductivity via simultaneously optimizing the phase and chemistry of the primary and secondary phases , 2017 .

[86]  J. I. Franco,et al.  Influence of microstructure on the electrical properties of NASICON materials , 2001 .

[87]  W. Wieczorek,et al.  Effective medium theory in studies of conductivity of composite polymeric electrolytes , 1995 .

[88]  Masahiro Tatsumisago,et al.  X‐ray Crystal Structure Analysis of Sodium‐Ion Conductivity in 94 Na3PS4⋅6 Na4SiS4 Glass‐Ceramic Electrolytes , 2014 .

[89]  Y. Chen-Yang,et al.  Polyacrylonitrile electrolytes: 1. A novel high-conductivity composite polymer electrolyte based on PAN, LiClO4 and α-Al2O3 , 2002 .

[90]  Frank Tietz,et al.  Survey of the transport properties of sodium superionic conductor materials for use in sodium batteries , 2015 .

[91]  Youngsik Kim,et al.  A hybrid solid electrolyte for flexible solid-state sodium batteries , 2015 .

[92]  S. Chandra,et al.  Experimental investigations on a sodium-ion-conducting polymer electrolyte based on poly(ethylene oxide) complexed with NaPF6 , 1995 .

[93]  Yuping Wu,et al.  A sodium ion conducting gel polymer electrolyte , 2015 .

[94]  M. Armand,et al.  Building better batteries , 2008, Nature.

[95]  H. Hong,et al.  Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12☆ , 1976 .

[96]  Eongyu Yi,et al.  Lithium Ion Conducting Poly(ethylene oxide)-Based Solid Electrolytes Containing Active or Passive Ceramic Nanoparticles , 2017 .

[97]  Yong‐Sheng Hu,et al.  A Self‐Forming Composite Electrolyte for Solid‐State Sodium Battery with Ultralong Cycle Life , 2017 .

[98]  T. Jacobsen,et al.  Poly(ethylene oxide)―sodium perchlorate electrolytes in solid-state sodium cells , 1988 .