Universal OWL Axiom Enrichment for Large Knowledge Bases

The Semantic Web has seen a rise in the availability and usage of knowledge bases over the past years, in particular in the Linked Open Data initiative. Despite this growth, there is still a lack of knowledge bases that consist of high quality schema information and instance data adhering to this schema. Several knowledge bases only consist of schema information, while others are, to a large extent, a mere collection of facts without a clear structure. The combination of rich schema and instance data would allow powerful reasoning, consistency checking, and improved querying possibilities as well as provide more generic ways to interact with the underlying data. In this article, we present a light-weight method to enrich knowledge bases accessible via SPARQL endpoints with almost all types of OWL 2 axioms. This allows to semi-automatically create schemata, which we evaluate and discuss using DBpedia.

[1]  Alexander Borgida,et al.  Computing Least Common Subsumers in Description Logics , 1992, AAAI.

[2]  William W. Cohen,et al.  Learning the Classic Description Logic: Theoretical and Experimental Results , 1994, KR.

[3]  Shan-Hwei Nienhuys-Cheng,et al.  Foundations of Inductive Logic Programming , 1997, Lecture Notes in Computer Science.

[4]  A. Agresti,et al.  Approximate is Better than “Exact” for Interval Estimation of Binomial Proportions , 1998 .

[5]  Liviu Badea,et al.  A Refinement Operator for Description Logics , 2000, ILP.

[6]  Sebastian Rudolph,et al.  Exploring Relational Structures Via FLE , 2004, ICCS.

[7]  Harry S. Delugach,et al.  Conceptual Structures at Work , 2004, Lecture Notes in Computer Science.

[8]  Jeffrey M. Bradshaw,et al.  Applying KAoS Services to Ensure Policy Compliance for Semantic Web Services Workflow Composition and Enactment , 2004, SEMWEB.

[9]  Luigi Iannone,et al.  Knowledge-Intensive Induction of Terminologies from Metadata , 2004, SEMWEB.

[10]  Luigi Iannone,et al.  An Algorithm Based on Counterfactuals for Concept Learning in the Semantic Web , 2005, IEA/AIE.

[11]  Moonis Ali,et al.  Innovations in Applied Artificial Intelligence , 2005 .

[12]  Harris Wu,et al.  Harvesting social knowledge from folksonomies , 2006, HYPERTEXT '06.

[13]  Hyoil Han,et al.  A survey on ontology mapping , 2006, SGMD.

[14]  Jens Lehmann Concept Learning in Description Logics , 2006 .

[15]  Bernhard Ganter,et al.  Completing Description Logic Knowledge Bases Using Formal Concept Analysis , 2007, IJCAI.

[16]  Franz Baader,et al.  Computing the Least Common Subsumer w.r.t. a Background Terminology , 2004, Description Logics.

[17]  Jens Lehmann,et al.  Hybrid Learning of Ontology Classes , 2007, MLDM.

[18]  Jens Lehmann,et al.  Foundations of Refinement Operators for Description Logics , 2007, ILP.

[19]  York Sure-Vetter,et al.  Learning Disjointness , 2007, ESWC.

[20]  Jens Lehmann,et al.  A Refinement Operator Based Learning Algorithm for the ALC Description Logic , 2007, ILP.

[21]  Francesca A. Lisi,et al.  Under Consideration for Publication in Theory and Practice of Logic Programming Building Rules on Top of Ontologies for the Semantic Web with Inductive Logic Programming , 2007 .

[22]  Francesca A. Lisi,et al.  Learning SHIQ+log Rules for Ontology Evolution , 2008, SWAP.

[23]  Jérôme Euzenat,et al.  Ten Challenges for Ontology Matching , 2008, OTM Conferences.

[24]  Nicola Fanizzi,et al.  DL-FOIL Concept Learning in Description Logics , 2008, ILP.

[25]  Johanna Völker,et al.  Fostering Web Intelligence by Semi-automatic OWL Ontology Refinement , 2008, 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology.

[26]  Jens Lehmann,et al.  Learning of OWL Class Descriptions on Very Large Knowledge Bases , 2008, SEMWEB.

[27]  Jens Lehmann,et al.  Ideal Downward Refinement in the EL Description Logic , 2009, ILP.

[28]  Baris Sertkaya,et al.  OntoComP System Description , 2009, Description Logics.

[29]  Asunción Gómez-Pérez,et al.  Change Representation For OWL 2 Ontologies , 2009, OWLED.

[30]  Jens Lehmann,et al.  DBpedia - A crystallization point for the Web of Data , 2009, J. Web Semant..

[31]  Lora Aroyo,et al.  The Semantic Web: Research and Applications , 2009, Lecture Notes in Computer Science.

[32]  Jens Lehmann,et al.  DL-Learner: Learning Concepts in Description Logics , 2009, J. Mach. Learn. Res..

[33]  Tharam S. Dillon,et al.  On the Move to Meaningful Internet Systems, OTM 2010 , 2010, Lecture Notes in Computer Science.

[34]  Ian Horrocks,et al.  The Semantic Web – ISWC 2010: 9th International Semantic Web Conference, ISWC 2010, Shanghai, China, November 7-11, 2010, Revised Selected Papers, Part I , 2010, SEMWEB.

[35]  Jens Lehmann,et al.  ORE - A Tool for Repairing and Enriching Knowledge Bases , 2010, SEMWEB.

[36]  Johanna Völker,et al.  Inductive Learning of Disjointness Axioms , 2011, OTM Conferences.

[37]  Jeff Z. Pan,et al.  The Semantic Web: Research and Applications - 8th Extended Semantic Web Conference, ESWC 2011, Heraklion, Crete, Greece, May 29-June 2, 2011, Proceedings, Part I , 2010, ESWC.

[38]  Jens Lehmann,et al.  Class expression learning for ontology engineering , 2011, J. Web Semant..

[39]  Johanna Völker,et al.  Statistical Schema Induction , 2011, ESWC.

[40]  Jens Lehmann,et al.  DBpedia and the live extraction of structured data from Wikipedia , 2012, Program.