The rule-based language XL and the modelling environment GroIMP illustrated with simulated tree competition.

The programming language XL ('eXtended L-system language') is an extension of Java, which supports the specification and execution of relational growth grammars, a variant of parallel graph grammars. XL is a powerful generalisation of the well-known L-system approach to functional-structural plant modelling. Some features of XL are discussed that are particularly useful for combining structure and function and for querying plant architectural data, and an exemplary functional-structural plant model of young beech trees is presented that is implemented in XL and includes PAR distribution, assimilate allocation and morphological plasticity. Together with a simpler model of spruce trees, this beech model is included in a virtual landscape with a mixed-species forest stand where competition for light occurs. The open-source platform GroIMP was used for the complete model development process and for visualising the results.

[1]  Winfried Kurth,et al.  Relational Growth Grammars - A Parallel Graph Transformation Approach with Applications in Biology and Architecture , 2007, AGTIVE.

[2]  Christophe Pradal,et al.  Openalea - visual programming and component based software for plant modeling , 2007 .

[3]  C. François,et al.  Modelling carbon and water cycles in a beech forest: Part II.: Validation of the main processes from organ to stand scale , 2005 .

[4]  Ole Kniemeyer,et al.  Design and implementation of a graph grammar based language for functional-structural plant modelling , 2008 .

[5]  Leonidas J. Guibas,et al.  Robust Monte Carlo methods for light transport simulation , 1997 .

[6]  P. Prusinkiewicz,et al.  3D Architectural Modelling of Aerial Photomorphogenesis in White Clover (Trifolium repens L.) using L-systems , 2000 .

[7]  Winfried Kurth,et al.  A Graph Grammar Approach to Artificial Life , 2004, Artificial Life.

[8]  Winfried Kurth,et al.  Barley morphology, genetics and hormonal regulation of internode elongation modelled by a relational growth grammar. , 2005, The New phytologist.

[9]  Gerhard Buck-Sorlin,et al.  GroIMP as a platform for functional-structural modelling of plants , 2007 .

[10]  Przemyslaw Prusinkiewicz,et al.  Improving the process of plant modeling: the l+c modeling language , 2003 .

[11]  Ákos Horváth,et al.  Generation of Sierpinski Triangles: A Case Study for Graph Transformation Tools , 2007, AGTIVE.

[12]  Winfried Kurth,et al.  Die Simulation der Baumarchitektur mit Wachstumsgrammatiken , 1999 .

[13]  Jörg Strobel Die Atmung der verholzten Organe von Altbuchen (Fagus sylvatica L.) in einem Kalk- und einem Sauerhumusbuchenwald , 2004 .

[14]  Przemyslaw Prusinkiewicz,et al.  The L-system-based plant-modeling environment L-studio 4.0 , 2004 .

[15]  Radomír Mech,et al.  Visual Models of Plant Development , 1997, Handbook of Formal Languages.

[16]  C. Fournier,et al.  OpenAlea: a visual programming and component-based software platform for plant modelling. , 2008, Functional plant biology : FPB.

[17]  Gerhard Buck-Sorlin,et al.  Using the Language XL for Structural Analysis , 2007 .

[18]  Christophe Godin,et al.  Measuring and analysing plants with the AMAPmod software , 1997 .

[19]  Christophe Godin,et al.  Functional-structural plant modelling. , 2005, The New phytologist.

[20]  François Houllier,et al.  Essai sur les relations entre l'architecture d'un arbre et la grosseur de ses axes végétatifs , 1997 .

[21]  Bruno Andrieu,et al.  The nested radiosity model for the distribution of light within plant canopies , 1998 .

[22]  A. Granier,et al.  Modelling carbon and water cycles in a beech forest: Part I: Model description and uncertainty analysis on modelled NEE , 2005 .

[23]  Jim Hanan,et al.  Lighting virtual crops: the CARIBU solution for open L-systems , 2004 .

[24]  Bruno Andrieu,et al.  Radiative models for architectural modeling , 1999 .

[25]  Colin Smith,et al.  Local Specification of Surface Subdivision Algorithms , 2003, AGTIVE.

[26]  J. Prioul,et al.  Partitioning of Transfer and Carboxylation Components of Intracellular Resistance to Photosynthetic CO2 Fixation: A Critical Analysis of the Methods Used , 1977 .

[27]  Mengzhen Kang,et al.  A mathematical approach estimating source and sink functioning of competing organs , 2006 .

[28]  G. Buck-Sorlin,et al.  A rule-based model of barley morphogenesis, with special respect to shading and gibberellic acid signal transduction. , 2007, Annals of botany.

[29]  Przemyslaw Prusinkiewicz,et al.  The Algorithmic Beauty of Plants , 1990, The Virtual Laboratory.