Understanding the Dynamic Liquid-Assisted Chemical Vapor Deposition Growth of Copper Telluride and Its Low-Temperature Phase Transition

[1]  D. Kim,et al.  Novel Nanoarchitectured Cu2Te as a Photocathodes for Photoelectrochemical Water Splitting Applications , 2022, Nanomaterials.

[2]  M. Hersam,et al.  Vapor–liquid assisted chemical vapor deposition of Cu2X materials , 2022, 2D Materials.

[3]  E. Doris,et al.  Fullerenes make copper catalysis better , 2022, Science.

[4]  M. Schleberger,et al.  Dynamic growth/etching model for the synthesis of two-dimensional transition metal dichalcogenides via chemical vapour deposition , 2022, 2D Materials.

[5]  Xinqi Chen,et al.  Synthesis of layered vs planar Mo2C: role of Mo diffusion , 2021, 2D Materials.

[6]  D. Pisignano,et al.  Unusual Red Light Emission from Nonmetallic Cu2Te Microdisk for Laser and SERS Applications , 2021, Advanced Optical Materials.

[7]  E. Sargent,et al.  Silica-copper catalyst interfaces enable carbon-carbon coupling towards ethylene electrosynthesis , 2021, Nature Communications.

[8]  D. Ma,et al.  Lattice-Matched Metal-Semiconductor Heterointerface in Monolayer Cu2Te. , 2021, ACS nano.

[9]  F. Ding,et al.  The epitaxy of 2D materials growth , 2020, Nature Communications.

[10]  R. Mallik,et al.  Raman Spectroscopy Study of Phonon Liquid Electron Crystal in Copper Deficient Superionic Thermoelectric Cu2–xTe , 2020, ACS Applied Energy Materials.

[11]  Jooheon Kim,et al.  Facile fabrication of one-dimensional Te/Cu2Te nanorod composites with improved thermoelectric power factor and low thermal conductivity , 2018, Scientific Reports.

[12]  F. Besenbacher,et al.  Controllable etching of MoS2 basal planes for enhanced hydrogen evolution through the formation of active edge sites , 2018, Nano Energy.

[13]  S. Jiménez-Sandoval,et al.  Vibrational and electrical properties of Cu2−xTe films: experimental data and first principle calculations , 2018, Scientific Reports.

[14]  M. Osada,et al.  Vapour–liquid–solid growth of monolayer MoS2 nanoribbons , 2018, Nature Materials.

[15]  Jingrui Liang,et al.  Visualizing grain boundaries in monolayer MoSe2 using mild H2O vapor etching , 2018, Nano Research.

[16]  J. Lowengrub,et al.  Toward a Mechanistic Understanding of Vertical Growth of van der Waals Stacked 2D Materials: A Multiscale Model and Experiments. , 2017, ACS nano.

[17]  M. Nakano,et al.  Layer-by-Layer Epitaxial Growth of Scalable WSe2 on Sapphire by Molecular Beam Epitaxy. , 2017, Nano letters.

[18]  Mofasser Mallick,et al.  Realizing high figure-of-merit in Cu2Te using a combination of doping, hierarchical structure, and simple processing , 2017 .

[19]  C. Uher,et al.  NMR study of vacancy and structure-induced changes in Cu 2-x Te , 2017 .

[20]  Lin-wang Wang,et al.  Large‐Size 2D β‐Cu2S Nanosheets with Giant Phase Transition Temperature Lowering (120 K) Synthesized by a Novel Method of Super‐Cooling Chemical‐Vapor‐Deposition , 2016, Advanced materials.

[21]  Huaqiang Wu,et al.  Synthesis and characterization of vertically standing MoS2 nanosheets , 2016, Scientific Reports.

[22]  S. Dou,et al.  Ambient Aqueous Growth of Cu2Te Nanostructures with Excellent Electrocatalytic Activity toward Sulfide Redox Shuttles , 2016, Advanced science.

[23]  T. Michely,et al.  Etching of graphene on Ir(111) with molecular oxygen , 2016 .

[24]  Ning Kang,et al.  Large-area high-quality 2D ultrathin Mo2C superconducting crystals. , 2015, Nature materials.

[25]  O. Singh,et al.  Electrical characterization of grain boundaries of CZTS thin films using conductive atomic force microscopy techniques , 2015 .

[26]  S. Stahl,et al.  Copper-Catalyzed Aerobic Oxidations of Organic Molecules: Pathways for Two-Electron Oxidation with a Four-Electron Oxidant and a One-Electron Redox-Active Catalyst. , 2015, Accounts of chemical research.

[27]  Pinshane Y. Huang,et al.  High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity , 2015, Nature.

[28]  Shanshan Yao,et al.  Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS₂ films onto arbitrary substrates. , 2014, ACS nano.

[29]  W. Jo,et al.  Surface potential on grain boundaries and intragrains of highly efficient Cu2ZnSn(S,Se)4 thin-films grown by two-step sputtering process , 2014 .

[30]  T. Einstein,et al.  Anisotropic Etching of Atomically Thin MoS2 , 2013 .

[31]  Chongwu Zhou,et al.  Anisotropic hydrogen etching of chemical vapor deposited graphene. , 2012, ACS nano.

[32]  K. Ikeda,et al.  Epitaxial growth of large-area single-layer graphene over Cu(111)/sapphire by atmospheric pressure CVD , 2012 .

[33]  Timothy J. Trentler,et al.  Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth , 1995, Science.

[34]  R. Blachnik,et al.  The system copper-tellurium , 1983 .