The use of hollow mesoporous silica nanospheres to encapsulate bortezomib and improve efficacy for non-small cell lung cancer therapy.

[1]  T. Robak Bortezomib in the treatment of mantle cell lymphoma. , 2015, Future oncology.

[2]  Qian Wang,et al.  A Low‐Toxic Multifunctional Nanoplatform Based on Cu9S5@mSiO2 Core‐Shell Nanocomposites: Combining Photothermal‐ and Chemotherapies with Infrared Thermal Imaging for Cancer Treatment , 2013 .

[3]  B. Rhee,et al.  Mitochondrial modulation decreases the bortezomib‐resistance in multiple myeloma cells , 2013, International journal of cancer.

[4]  L. Cai,et al.  Enhanced therapeutic effect of cisplatin on the prostate cancer in tumor-bearing mice by transfecting the attenuated Salmonella carrying a plasmid co-expressing p53 gene and mdm2 siRNA. , 2013, Cancer letters.

[5]  Chi‐Hwa Wang,et al.  Combined modality doxorubicin-based chemotherapy and chitosan-mediated p53 gene therapy using double-walled microspheres for treatment of human hepatocellular carcinoma. , 2013, Biomaterials.

[6]  Junqing Hu,et al.  One-pot morphology-controlled synthesis of various shaped mesoporous silica nanoparticles , 2013, Journal of Materials Science.

[7]  Cecilia Sahlgren,et al.  Mesoporous silica nanoparticles in medicine--recent advances. , 2013, Advanced drug delivery reviews.

[8]  A. M. Houghton,et al.  Mechanistic links between COPD and lung cancer , 2013, Nature Reviews Cancer.

[9]  M. Pagano,et al.  Role of the Ubiquitin Proteasome System in the Heart , 2013, Circulation research.

[10]  Peter G. Smith,et al.  Role of ubiquitin ligases and the proteasome in oncogenesis: novel targets for anticancer therapies. , 2013, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[11]  P. Jänne,et al.  New targetable oncogenes in non-small-cell lung cancer. , 2013, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[12]  Molecular predictors of response to tyrosine kinase inhibitors in patients with Non-Small-Cell Lung Cancer , 2012, Journal of experimental & clinical cancer research : CR.

[13]  Parantu K. Shah,et al.  A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance. , 2012, Cancer cell.

[14]  Rujia Zou,et al.  A simple transformation from silica core–shell–shell to yolk–shell nanostructures: a useful platform for effective cell imaging and drug delivery , 2012 .

[15]  Tae Won Kim,et al.  Bortezomib induces G2-M arrest in human colon cancer cells through ROS-inducible phosphorylation of ATM-CHK1. , 2012, International journal of oncology.

[16]  M. Coffey,et al.  Reovirus therapy stimulates endoplasmic reticular stress, NOXA induction, and augments bortezomib-mediated apoptosis in multiple myeloma , 2012, Oncogene.

[17]  B. Cheson,et al.  Bortezomib: a proteasome inhibitor with an evolving role in select subtypes of B-cell non-Hodgkin's lymphoma. , 2012, Future oncology.

[18]  Jun Lin,et al.  Functionalized mesoporous silica materials for controlled drug delivery. , 2012, Chemical Society reviews.

[19]  J. Pignon,et al.  Phase 2 study of frontline bortezomib in patients with advanced non-small cell lung cancer. , 2012, Lung cancer.

[20]  R. Jove,et al.  Bortezomib induces apoptosis and growth suppression in human medulloblastoma cells, associated with inhibition of AKT and NF-ĸB signaling, and synergizes with an ERK inhibitor. , 2012, Cancer biology & therapy.

[21]  Robert Clarke,et al.  Guidelines for the use and interpretation of assays for monitoring autophagy , 2012 .

[22]  Elisabeth Brambilla,et al.  Squamous Cell Carcinoma of the Lung: Molecular Subtypes and Therapeutic Opportunities , 2012, Clinical Cancer Research.

[23]  J. Maupin-Furlow Proteasomes and protein conjugation across domains of life , 2011, Nature Reviews Microbiology.

[24]  Asher Mullard Next-generation proteasome blockers promise safer cancer therapy , 2012, Nature Medicine.

[25]  A. Varshavsky Three decades of studies to understand the functions of the ubiquitin family. , 2012, Methods in molecular biology.

[26]  J. Kolesar,et al.  Stability of unused reconstituted bortezomib in original manufacturer vials , 2011, Journal of oncology pharmacy practice : official publication of the International Society of Oncology Pharmacy Practitioners.

[27]  Jianlin Shi,et al.  A Hollow‐Core, Magnetic, and Mesoporous Double‐Shell Nanostructure: In Situ Decomposition/Reduction Synthesis, Bioimaging, and Drug‐Delivery Properties , 2011 .

[28]  Jinlong Zhang,et al.  Superbright multifluorescent core-shell mesoporous nanospheres as trackable transport carrier for drug. , 2011, ACS nano.

[29]  Z. Su,et al.  Uniform hollow mesoporous silica nanocages for drug delivery in vitro and in vivo for liver cancer therapy , 2011 .

[30]  J. Sørensen,et al.  Customising chemotherapy in advanced nonsmall cell lung cancer: daily practice and perspectives , 2011, European Respiratory Review.

[31]  Di Chen,et al.  Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives. , 2011, Current cancer drug targets.

[32]  Dong Chen,et al.  In vivo delivery of silica nanorattle encapsulated docetaxel for liver cancer therapy with low toxicity and high efficacy. , 2010, ACS nano.

[33]  Juan L. Vivero-Escoto,et al.  Mesoporous silica nanoparticles for intracellular controlled drug delivery. , 2010, Small.

[34]  Jae K. Lee,et al.  Multigene Expression–Based Predictors for Sensitivity to Vorinostat and Velcade in Non–Small Cell Lung Cancer , 2010, Molecular Cancer Therapeutics.

[35]  D. Esseltine,et al.  Lenalidomide, bortezomib, and dexamethasone combination therapy in patients with newly diagnosed multiple myeloma. , 2010, Blood.

[36]  Joseph M. DeSimone,et al.  Strategies in the design of nanoparticles for therapeutic applications , 2010, Nature Reviews Drug Discovery.

[37]  Jun Yu,et al.  Proteasome inhibition: a new therapeutic strategy to cancer treatment. , 2010, Cancer letters.

[38]  Hua Yue,et al.  Galactosylated nanocrystallites of insoluble anticancer drug for liver-targeting therapy: an in vitro evaluation. , 2010, Nanomedicine.

[39]  N. Saijo,et al.  Bortezomib potentially inhibits cellular growth of vascular endothelial cells through suppression of G2/M transition , 2010, Cancer science.

[40]  G. Scagliotti,et al.  A randomized phase II study of bortezomib and pemetrexed, in combination or alone, in patients with previously treated advanced non-small-cell lung cancer. , 2010, Lung cancer.

[41]  Emmanuel P. Giannelis,et al.  Facile and Scalable Synthesis of Monodispersed Spherical Capsules with a Mesoporous Shell , 2010 .

[42]  J. Rigas,et al.  Phase II study of the proteasome inhibitor bortezomib (PS-341, Velcade) in chemotherapy-naïve patients with advanced stage non-small cell lung cancer (NSCLC). , 2010, Lung cancer.

[43]  J. Laubach,et al.  Hematology: Bortezomib and dexamethasone induction for multiple myeloma , 2010, Nature Reviews Clinical Oncology.

[44]  E. Vokes,et al.  Randomized phase II trial of docetaxel plus cetuximab or docetaxel plus bortezomib in patients with advanced non-small-cell lung cancer and a performance status of 2: CALGB 30402. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[45]  Hua Liu,et al.  A Randomized Phase 2 Study of Erlotinib Alone and in Combination with Bortezomib in Previously Treated Advanced Non-small Cell Lung Cancer , 2009, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[46]  E. Giovannetti,et al.  Bortezomib induces schedule-dependent modulation of gemcitabine pharmacokinetics and pharmacodynamics in non-small cell lung cancer and blood mononuclear cells , 2009, Molecular Cancer Therapeutics.

[47]  Mark E. Davis,et al.  Nanoparticle therapeutics: an emerging treatment modality for cancer , 2008, Nature Reviews Drug Discovery.

[48]  M. Herlyn,et al.  Bortezomib induces apoptosis in esophageal squamous cell carcinoma cells through activation of the p38 mitogen-activated protein kinase pathway , 2008, Molecular Cancer Therapeutics.

[49]  Chung-Yuan Mou,et al.  Mesoporous silica nanoparticles improve magnetic labeling efficiency in human stem cells. , 2008, Small.

[50]  John L Cleveland,et al.  Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes , 2008, Autophagy.

[51]  L. Beckett,et al.  Phase I Study of Two Different Schedules of Bortezomib and Pemetrexed in Advanced Solid Tumors with Emphasis on Non-small Cell Lung Cancer , 2007, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[52]  G. Giaccone,et al.  The proteasomal and apoptotic phenotype determine bortezomib sensitivity of non-small cell lung cancer cells , 2007, Molecular Cancer.

[53]  U. Steidl,et al.  The proteasome inhibitor bortezomib acts differently in combination with p53 gene transfer or cytotoxic chemotherapy on NSCLC cells , 2007, Cancer Gene Therapy.

[54]  Cheng-long Huang,et al.  Clinical significance of the p53 pathway and associated gene therapy in non-small cell lung cancers. , 2007, Future oncology.

[55]  J. Friedberg,et al.  The Role of Bortezomib in the Treatment of Lymphoma , 2007, Cancer investigation.

[56]  T. Davidson,et al.  Pharmacology, pharmacokinetics, and practical applications of bortezomib. , 2004, Oncology.

[57]  Bart Barlogie,et al.  A phase 2 study of bortezomib in relapsed, refractory myeloma. , 2003, The New England journal of medicine.

[58]  M. Scheel Conference on the primary prevention of cancer: assessment of risk factors and future directions. , 1980, Preventive medicine.

[59]  A. Upton,et al.  Future directions in cancer prevention. , 1980, Preventive medicine.

[60]  C. Ramakrishnan,et al.  Pharmacology, pharmacokinetics, and practical applications of bortezomib. , 1964 .