Computational Methods in Cardiovascular Mechanics

The introduction of computational models in cardiovascular sciences has been progressively bringing new and unique tools for the investigation of the physiopathology. Together with the dramatic improvement of imaging and measuring devices on one side, and of computational architectures on the other one, mathematical and numerical models have provided a new, clearly noninvasive, approach for understanding not only basic mechanisms but also patient-specific conditions, and for supporting the design and the development of new therapeutic options. The terminology in silico is, nowadays, commonly accepted for indicating this new source of knowledge added to traditional in vitro and in vivo investigations. The advantages of in silico methodologies are basically the low cost in terms of infrastructures and facilities, the reduced invasiveness and, in general, the intrinsic predictive capabilities based on the use of mathematical models. The disadvantages are generally identified in the distance between the real cases and their virtual counterpart required by the conceptual modeling that can be detrimental for the reliability of numerical simulations.

[1]  A. Quarteroni,et al.  Numerical solution of parametrized Navier–Stokes equations by reduced basis methods , 2007 .

[2]  Wei Sun,et al.  Fluid Simulation of a Transcatheter Aortic Valve Deployment into a Patient-Specific Aortic Root , 2011 .

[3]  M. Perry,et al.  Finite element analysis and fatigue of stents , 2002, Minimally invasive therapy & allied technologies : MITAT : official journal of the Society for Minimally Invasive Therapy.

[4]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[5]  Traian Iliescu,et al.  Proper orthogonal decomposition closure models for turbulent flows: A numerical comparison , 2011, 1106.3585.

[6]  Annalisa Quaini,et al.  Deconvolution‐based nonlinear filtering for incompressible flows at moderately large Reynolds numbers , 2016 .

[7]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[8]  E Peña,et al.  Influence of geometrical parameters on radial force during self-expanding stent deployment. Application for a variable radial stiffness stent. , 2012, Journal of the mechanical behavior of biomedical materials.

[9]  Fabio Nobile,et al.  Robin-Robin preconditioned Krylov methods for fluid-structure interaction problems , 2009 .

[10]  Christopher P. Cheng,et al.  Biomechanical Response of Stented Carotid Arteries to Swallowing and Neck Motion , 2008, Journal of endovascular therapy : an official journal of the International Society of Endovascular Specialists.

[11]  Michele Conti,et al.  Impact of Carotid Stent Cell Design on Vessel Scaffolding: A Case Study Comparing Experimental Investigation and Numerical Simulations , 2011, Journal of endovascular therapy : an official journal of the International Society of Endovascular Specialists.

[12]  M. Moulton,et al.  Three-dimensional bending, torsion and axial compression of the femoropopliteal artery during limb flexion. , 2014, Journal of biomechanics.

[13]  A. Quarteroni,et al.  A reduced computational and geometrical framework for inverse problems in hemodynamics , 2013, International journal for numerical methods in biomedical engineering.

[14]  Karen Veroy,et al.  Certified Reduced Basis Methods for Parametrized Saddle Point Problems , 2012, SIAM J. Sci. Comput..

[15]  Gianluigi Rozza,et al.  Reduced basis approximation and a posteriori error estimation for Stokes flows in parametrized geometries: roles of the inf-sup stability constants , 2013, Numerische Mathematik.

[16]  Luca Gerardo-Giorda,et al.  Analysis and Optimization of Robin-Robin Partitioned Procedures in Fluid-Structure Interaction Problems , 2010, SIAM J. Numer. Anal..

[17]  Ted J. Vaughan,et al.  Simulation of Self Expanding Transcatheter Aortic Valve in a Realistic Aortic Root: Implications of Deployment Geometry on Leaflet Deformation , 2014, Annals of Biomedical Engineering.

[18]  George Em Karniadakis,et al.  Window Proper Orthogonal Decomposition: Application to Continuum and Atomistic Data , 2014 .

[19]  Yuri Bazilevs,et al.  Fluid–structure interaction modeling of wind turbines: simulating the full machine , 2012, Computational Mechanics.

[20]  J. Hesthaven,et al.  Certified Reduced Basis Methods for Parametrized Partial Differential Equations , 2015 .

[21]  Philippe Moireau,et al.  Identification of artery wall stiffness: in vitro validation and in vivo results of a data assimilation procedure applied to a 3D fluid-structure interaction model. , 2014, Journal of biomechanics.

[22]  T. Hughes,et al.  Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations , 2010 .

[23]  John A. Evans,et al.  Robustness of isogeometric structural discretizations under severe mesh distortion , 2010 .

[24]  Nadine Aubry,et al.  The dynamics of coherent structures in the wall region of a turbulent boundary layer , 1988, Journal of Fluid Mechanics.

[25]  Joris Bols,et al.  Unstructured hexahedral mesh generation of complex vascular trees using a multi-block grid-based approach , 2016, Computer methods in biomechanics and biomedical engineering.

[26]  L. Formaggia,et al.  Stability analysis of second-order time accurate schemes for ALE-FEM , 2004 .

[27]  F Auricchio,et al.  Simulation of transcatheter aortic valve implantation: a patient-specific finite element approach , 2014, Computer methods in biomechanics and biomedical engineering.

[28]  Christopher P. Cheng,et al.  In vivo MR angiographic quantification of axial and twisting deformations of the superficial femoral artery resulting from maximum hip and knee flexion. , 2006, Journal of vascular and interventional radiology : JVIR.

[29]  Dominique Chapelle,et al.  A Galerkin strategy with Proper Orthogonal Decomposition for parameter-dependent problems – Analysis, assessments and applications to parameter estimation , 2013 .

[30]  Alessandro Veneziani,et al.  Coupled Morphological–Hemodynamic Computational Analysis of Type B Aortic Dissection: A Longitudinal Study , 2018, Annals of Biomedical Engineering.

[31]  Ernst Rank,et al.  Finite cell method , 2007 .

[32]  A. Prohl Projection and quasi-compressibility methods for solving the incompressible navier-stokes equations , 1997 .

[33]  Gianluigi Rozza,et al.  Reduced basis method for linear elasticity problems with many parameters , 2008 .

[34]  L. Heltai,et al.  On the hyper-elastic formulation of the immersed boundary method , 2008 .

[35]  Alfio Quarteroni,et al.  Cardiovascular mathematics : modeling and simulation of the circulatory system , 2009 .

[36]  Ramon Codina,et al.  Explicit reduced‐order models for the stabilized finite element approximation of the incompressible Navier–Stokes equations , 2013 .

[37]  Yuri Bazilevs,et al.  Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models , 2015, Computational mechanics.

[38]  Jean-Antoine Désidéri,et al.  Stability Properties of POD–Galerkin Approximations for the Compressible Navier–Stokes Equations , 2000 .

[39]  Thomas J. R. Hughes,et al.  Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .

[40]  Annalisa Quaini,et al.  Computational reduction strategies for the detection of steady bifurcations in incompressible fluid-dynamics: Applications to Coanda effect in cardiology , 2017, J. Comput. Phys..

[41]  Thomas Richter,et al.  A Locally Modified Parametric Finite Element Method for Interface Problems , 2014, SIAM J. Numer. Anal..

[42]  Roland Glowinski,et al.  Stable loosely-coupled-type algorithm for fluid-structure interaction in blood flow , 2009, J. Comput. Phys..

[43]  Thomas J. R. Hughes,et al.  Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow , 2007, IMR.

[44]  John A. Evans,et al.  An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .

[45]  F. Auricchio,et al.  Impact of Thoracic Endovascular Aortic Repair on Pulsatile Circumferential and Longitudinal Strain in Patients With Aneurysm , 2017, Journal of endovascular therapy : an official journal of the International Society of Endovascular Specialists.

[46]  Gianluigi Rozza,et al.  POD–Galerkin monolithic reduced order models for parametrized fluid‐structure interaction problems , 2016 .

[47]  T Christian Gasser,et al.  Biomechanical Rupture Risk Assessment , 2016, AORTA.

[48]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[49]  Christian Vergara,et al.  Flow rate boundary problems for an incompressible fluid in deformable domains: Formulations and solution methods , 2010 .

[50]  Stuart J Pocock,et al.  Transcatheter versus surgical aortic-valve replacement in high-risk patients. , 2011, The New England journal of medicine.

[51]  S Tzamtzis,et al.  Numerical analysis of the radial force produced by the Medtronic-CoreValve and Edwards-SAPIEN after transcatheter aortic valve implantation (TAVI). , 2013, Medical engineering & physics.

[52]  Silvia Schievano,et al.  Patient specific finite element analysis results in more accurate prediction of stent fractures: application to percutaneous pulmonary valve implantation. , 2010, Journal of biomechanics.

[53]  F. Auricchio,et al.  Patient-specific finite element analysis of popliteal stenting , 2016, Meccanica.

[54]  C. Yuan,et al.  MRI-based patient-specific human carotid atherosclerotic vessel material property variations in patients, vessel location and long-term follow up , 2017, PloS one.

[55]  Peter Scarborough,et al.  Cardiovascular disease in Europe: epidemiological update. , 2014, European heart journal.

[56]  F. Auricchio,et al.  Generalized plasticity and shape-memory alloys , 1996 .

[57]  P. Moireau,et al.  Sequential parameter estimation for fluid–structure problems: Application to hemodynamics , 2012, International journal for numerical methods in biomedical engineering.

[58]  Luca Dedè,et al.  Reduced Basis Method and A Posteriori Error Estimation for Parametrized Linear-Quadratic Optimal Control Problems , 2010, SIAM J. Sci. Comput..

[59]  Gianluigi Rozza,et al.  Real-time reduced basis techniques for Navier-Stokes equations: Optimization of parametrized bypass configurations , 2006 .

[60]  Alessandro Reali,et al.  On the Use of Anisotropic Triangles with Mixed Finite Elements: Application to an “Immersed” Approach for Incompressible Flow Problems , 2016 .

[61]  Liang Ge,et al.  Computational fluid dynamics simulation of transcatheter aortic valve degeneration. , 2009, Interactive cardiovascular and thoracic surgery.

[62]  Timothy J. Pedley,et al.  The fluid mechanics of large blood vessels , 1980 .

[63]  F. D. Whitcher,et al.  Simulation of in vivo loading conditions of nitinol vascular stent structures , 1997 .

[64]  Gianluigi Rozza,et al.  Reduced-order semi-implicit schemes for fluid-structure interaction problems , 2017, 1711.10829.

[65]  Alessandro Veneziani,et al.  Reduced models of the cardiovascular system , 2009 .

[66]  Christopher P. Cheng,et al.  Geometry and respiratory-induced deformation of abdominal branch vessels and stents after complex endovascular aneurysm repair. , 2015, Journal of vascular surgery.

[67]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[68]  Yuri Bazilevs,et al.  An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. , 2015, Computer methods in applied mechanics and engineering.

[69]  Christian Vergara,et al.  A New Approach to Numerical Solution of Defective Boundary Value Problems in Incompressible Fluid Dynamics , 2008, SIAM J. Numer. Anal..

[70]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[71]  C Scheffer,et al.  Application of finite element analysis to the design of tissue leaflets for a percutaneous aortic valve. , 2009, Journal of the mechanical behavior of biomedical materials.

[72]  Z. Siudak,et al.  A Prospective, Multicenter Study of a Novel Mesh-Covered Carotid Stent: The CGuard CARENET Trial (Carotid Embolic Protection Using MicroNet). , 2015, JACC. Cardiovascular interventions.

[73]  Ernst Rank,et al.  Geometric modeling, isogeometric analysis and the finite cell method , 2012 .

[74]  Tamal K. Dey,et al.  Delaunay Mesh Generation , 2012, Chapman and Hall / CRC computer and information science series.

[75]  Min Qi,et al.  Delivery and release of nitinol stent in carotid artery and their interactions: a finite element analysis. , 2007, Journal of biomechanics.

[76]  Paolo Zunino,et al.  An unfitted interface penalty method for the numerical approximation of contrast problems , 2011 .

[77]  C. Grandmont,et al.  Existence for an Unsteady Fluid-Structure Interaction Problem , 2000 .

[78]  Pascal Verdonck,et al.  Full-hexahedral structured meshing for image-based computational vascular modeling. , 2011, Medical engineering & physics.

[79]  Wei Shyy,et al.  Reduced-order description of fluid flow with moving boundaries by proper orthogonal decomposition , 2005 .

[80]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[81]  Fabio Nobile,et al.  A Stability Analysis for the Arbitrary Lagrangian Eulerian Formulation with Finite Elements , 1999 .

[82]  Gianluigi Rozza,et al.  A Reduced Basis Model with Parametric Coupling for Fluid-Structure Interaction Problems , 2012, SIAM J. Sci. Comput..

[83]  S. W. Robertson,et al.  Fatigue and durability of Nitinol stents. , 2008, Journal of the mechanical behavior of biomedical materials.

[84]  Anthony T. Patera,et al.  A reduced basis approach for variational problems with stochastic parameters: Application to heat conduction with variable Robin coefficient , 2009 .

[85]  T. Hughes,et al.  B¯ and F¯ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements , 2008 .

[86]  David A. Steinman,et al.  Variation in the Carotid Bifurcation Geometry of Young Versus Older Adults: Implications for Geometric Risk of Atherosclerosis , 2005, Stroke.

[87]  Michele Conti,et al.  Innovative and efficient stent flexibility simulations based on isogeometric analysis , 2015 .

[88]  Simona Perotto,et al.  Hi-POD Solution of Parametrized Fluid Dynamics Problems: Preliminary Results , 2017 .

[89]  Nathan M. Wilson,et al.  Methods for Quantifying Three-Dimensional Deformation of Arteries due to Pulsatile and Nonpulsatile Forces: Implications for the Design of Stents and Stent Grafts , 2008, Annals of Biomedical Engineering.

[90]  Francesco Migliavacca,et al.  Modeling Stented Coronary Arteries: Where We are, Where to Go , 2012, Annals of Biomedical Engineering.

[91]  Alessandro Reali,et al.  Assumed Natural Strain NURBS-based solid-shell element for the analysis of large deformation elasto-plastic thin-shell structures , 2015 .

[92]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[93]  G. Buscaglia,et al.  Finite element methods for the Stokes system with interface pressure discontinuities , 2015 .

[94]  Simone Deparis,et al.  Reduced Basis Error Bound Computation of Parameter-Dependent Navier-Stokes Equations by the Natural Norm Approach , 2008, SIAM J. Numer. Anal..

[95]  Alessandro Reali,et al.  Patient-specific aortic endografting simulation: From diagnosis to prediction , 2013, Comput. Biol. Medicine.

[96]  A. Hay,et al.  Local improvements to reduced-order models using sensitivity analysis of the proper orthogonal decomposition , 2009, Journal of Fluid Mechanics.

[97]  Tae Jin Kang,et al.  Mechanical modeling of self-expandable stent fabricated using braiding technology. , 2008, Journal of biomechanics.

[98]  A. Lew,et al.  A discontinuous‐Galerkin‐based immersed boundary method , 2008 .

[99]  Alexander Düster,et al.  Local enrichment of the finite cell method for problems with material interfaces , 2013 .

[100]  Hong Zhang,et al.  Modelling anisotropic material property of cerebral aneurysms for fluid-structure interaction simulation , 2013, Comput. methods Biomech. Biomed. Eng. Imaging Vis..

[101]  G. Rozza,et al.  On the stability of the reduced basis method for Stokes equations in parametrized domains , 2007 .

[102]  Alfio Quarteroni,et al.  Domain Decomposition Methods for Partial Differential Equations , 1999 .

[103]  Charbel Farhat,et al.  Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations , 1996 .

[104]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[105]  F Auricchio,et al.  Simulation of transcatheter aortic valve implantation through patient-specific finite element analysis: two clinical cases. , 2014, Journal of biomechanics.

[106]  Alessandro Reali,et al.  A study on unfitted 1D finite element methods , 2014, Comput. Math. Appl..

[107]  Alfio Quarteroni,et al.  Geometric multiscale modeling of the cardiovascular system, between theory and practice , 2016 .

[108]  A. Taylor,et al.  Patient-specific computational models to support interventional procedures: a case study of complex aortic re-coarctation. , 2015, EuroIntervention : journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology.

[109]  Tim A. Fonte,et al.  Computational Fluid Dynamics Applied to Cardiac Computed Tomography for Noninvasive Quantification of Fractional Flow Reserve , 2022 .

[110]  Christian Vergara,et al.  An approximate method for solving incompressible Navier–Stokes problems with flow rate conditions , 2007 .

[111]  A. Edelman,et al.  Mesh generation for implicit geometries , 2005 .

[112]  Ali H. Nayfeh,et al.  On the stability and extension of reduced-order Galerkin models in incompressible flows , 2009 .

[113]  Gianluigi Rozza,et al.  Fast simulations of patient-specific haemodynamics of coronary artery bypass grafts based on a POD-Galerkin method and a vascular shape parametrization , 2016, J. Comput. Phys..

[114]  Ivo Babuska,et al.  The finite element method for elliptic equations with discontinuous coefficients , 1970, Computing.

[115]  Wei Sun,et al.  Patient-specific modeling of biomechanical interaction in transcatheter aortic valve deployment. , 2012, Journal of biomechanics.

[116]  Gábor Székely,et al.  Image-Based Mechanical Analysis of Stent Deformation: Concept and Exemplary Implementation for Aortic Valve Stents , 2014, IEEE Transactions on Biomedical Engineering.

[117]  F. Ilinca,et al.  Numerical simulation of fluid–solid interaction using an immersed boundary finite element method , 2012 .

[118]  R. Echter,et al.  A hierarchic family of isogeometric shell finite elements , 2013 .

[119]  B. R. Noack Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 2013 .

[120]  A. Kamenskiy,et al.  Limb flexion-induced axial compression and bending in human femoropopliteal artery segments. , 2017, Journal of vascular surgery.

[121]  Patrick D. Anderson,et al.  A fluid-structure interaction method with solid-rigid contact for heart valve dynamics , 2006, J. Comput. Phys..

[122]  Jens Nørkær Sørensen,et al.  Evaluation of Proper Orthogonal Decomposition-Based Decomposition Techniques Applied to Parameter-Dependent Nonturbulent Flows , 1999, SIAM J. Sci. Comput..

[123]  D. Chapelle,et al.  Galerkin approximation with proper orthogonal decomposition : new error estimates and illustrative examples , 2012 .

[124]  Fabio Nobile,et al.  Added-mass effect in the design of partitioned algorithms for fluid-structure problems , 2005 .

[125]  J. B. Perot,et al.  An analysis of the fractional step method , 1993 .

[126]  L. Heltai,et al.  A finite element approach to the immersed boundary method , 2003 .

[127]  T. Belytschko,et al.  MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .

[128]  Victor M. Calo,et al.  The role of continuity in residual-based variational multiscale modeling of turbulence , 2007 .

[129]  T. Colin,et al.  Reduced Order Models at work , 2013 .

[130]  Antonio Concilio,et al.  Shape memory alloy engineering : for aerospace, structural and biomedical applications , 2014 .

[131]  A. Stuart,et al.  Data Assimilation: A Mathematical Introduction , 2015, 1506.07825.

[132]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[133]  Traian Iliescu,et al.  A numerical investigation of velocity-pressure reduced order models for incompressible flows , 2014, J. Comput. Phys..

[134]  Giancarlo Pennati,et al.  A Computational Approach for the Prediction of Fatigue Behaviour in Peripheral Stents: Application to a Clinical Case , 2015, Annals of Biomedical Engineering.

[135]  A. Kamenskiy,et al.  Effects of age on the physiological and mechanical characteristics of human femoropopliteal arteries. , 2015, Acta biomaterialia.

[136]  Ferdinando Auricchio,et al.  Shape-memory alloys: modelling and numerical simulations of the finite-strain superelastic behavior , 1997 .

[137]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[138]  Alessandro Veneziani,et al.  Inverse problems in Cardiovascular Mathematics: toward patient‐specific data assimilation and optimization , 2013, International journal for numerical methods in biomedical engineering.

[139]  Vladimir Brailovski,et al.  Finite element modeling of a progressively expanding shape memory stent. , 2006, Journal of biomechanics.

[140]  Marc Bocquet,et al.  Data Assimilation: Methods, Algorithms, and Applications , 2016 .

[141]  Charles A. Taylor,et al.  FFR Derived From Coronary CT Angiography in Nonculprit Lesions of Patients With Recent STEMI. , 2017, JACC. Cardiovascular imaging.

[142]  Janet S. Peterson,et al.  The Reduced Basis Method for Incompressible Viscous Flow Calculations , 1989 .

[143]  Nadine Aubry,et al.  On The Hidden Beauty of the Proper Orthogonal Decomposition , 1991 .

[144]  Y. Zhang,et al.  Estimating an equivalent wall‐thickness of a cerebral aneurysm through surface parameterization and a non‐linear spring system , 2011 .

[145]  Alessandro Reali,et al.  Phase-field description of brittle fracture in plates and shells , 2016 .

[146]  F. Auricchio,et al.  Stent-Graft Deployment Increases Aortic Stiffness in an Ex Vivo Porcine Model. , 2017, Annals of vascular surgery.

[147]  F. Auricchio,et al.  Patient‐specific finite element analysis of carotid artery stenting: a focus on vessel modeling , 2013, International journal for numerical methods in biomedical engineering.

[148]  Wei Sun,et al.  Simulated elliptical bioprosthetic valve deformation: implications for asymmetric transcatheter valve deployment. , 2010, Journal of biomechanics.

[149]  P. Segers,et al.  The influence of vascular anatomy on carotid artery stenting: a parametric study for damage assessment. , 2014, Journal of biomechanics.

[150]  Gianluigi Rozza,et al.  Model Order Reduction in Fluid Dynamics: Challenges and Perspectives , 2014 .

[151]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[152]  Michael C. H. Wu,et al.  Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials , 2015 .

[153]  Charles A. Taylor,et al.  Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. , 2013, Journal of the American College of Cardiology.

[154]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[155]  A. Quarteroni,et al.  Reduced Basis Methods for Partial Differential Equations: An Introduction , 2015 .

[156]  Ferdinando Auricchio,et al.  Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior , 1997 .

[157]  Lucia Mirabella,et al.  Treatment planning for a TCPC test case: A numerical investigation under rigid and moving wall assumptions , 2013, International journal for numerical methods in biomedical engineering.

[158]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[159]  A. Veneziani,et al.  A model reduction approach for the variational estimation of vascular compliance by solving an inverse fluid–structure interaction problem , 2014 .

[160]  Paul G. Constantine,et al.  Active Subspaces - Emerging Ideas for Dimension Reduction in Parameter Studies , 2015, SIAM spotlights.

[161]  F. Auricchio,et al.  Evaluation of carotid stent scaffolding through patient-specific finite element analysis. , 2012, International journal for numerical methods in biomedical engineering.

[162]  D. J. Benson,et al.  Patient-specific isogeometric structural analysis of aortic valve closure , 2015 .

[163]  Gianluigi Rozza,et al.  Reduced Order Methods for Modeling and Computational Reduction , 2013 .

[164]  A. Quarteroni,et al.  Model reduction techniques for fast blood flow simulation in parametrized geometries , 2012, International journal for numerical methods in biomedical engineering.

[165]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[166]  Alessandro Veneziani,et al.  ALADINS: An ALgebraic splitting time ADaptive solver for the Incompressible Navier-Stokes equations , 2013, J. Comput. Phys..

[167]  G. Sangalli,et al.  A fully ''locking-free'' isogeometric approach for plane linear elasticity problems: A stream function formulation , 2007 .

[168]  Salim Belouettar,et al.  Optimization Based Simulation of Self-expanding Nitinol Stent , 2013 .

[169]  B. Bou-Saïd,et al.  Morphological and stent design risk factors to prevent migration phenomena for a thoracic aneurysm: a numerical analysis. , 2015, Medical engineering & physics.

[170]  F. Auricchio,et al.  A three‐dimensional model describing stress‐temperature induced solid phase transformations: solution algorithm and boundary value problems , 2004 .

[171]  L. Heltai,et al.  Variational implementation of immersed finite element methods , 2011, 1110.2063.

[172]  Gianluigi Rozza,et al.  Reduced basis approximation and a posteriori error estimation for the time-dependent viscous Burgers’ equation , 2009 .

[173]  Alfio Quarteroni,et al.  Analysis of a Geometrical Multiscale Model Based on the Coupling of ODE and PDE for Blood Flow Simulations , 2003, Multiscale Model. Simul..

[174]  Yongjie Jessica Zhang,et al.  Geometric Modeling and Mesh Generation from Scanned Images , 2016 .

[175]  B. Haasdonk,et al.  REDUCED BASIS METHOD FOR FINITE VOLUME APPROXIMATIONS OF PARAMETRIZED LINEAR EVOLUTION EQUATIONS , 2008 .

[176]  M. A. Hyman,et al.  Non-iterative numerical solution of boundary-value problems , 1952 .

[177]  Sophie Papst,et al.  Computational Methods For Fluid Dynamics , 2016 .

[178]  G. Karniadakis,et al.  Stability and accuracy of periodic flow solutions obtained by a POD-penalty method , 2005 .

[179]  Peter Hansbo,et al.  A Lagrange multiplier method for the finite element solution of elliptic interface problems using non-matching meshes , 2005, Numerische Mathematik.

[180]  N. Rebelo,et al.  Finite element analysis for the design of Nitinol medical devices , 2000 .

[181]  Stefan Volkwein,et al.  Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics , 2002, SIAM J. Numer. Anal..

[182]  王东东,et al.  Computer Methods in Applied Mechanics and Engineering , 2004 .

[183]  Silvia Schievano,et al.  Patient-specific reconstructed anatomies and computer simulations are fundamental for selecting medical device treatment: application to a new percutaneous pulmonary valve , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[184]  W. Wall,et al.  An eXtended Finite Element Method/Lagrange multiplier based approach for fluid-structure interaction , 2008 .

[185]  Nuno Rebelo,et al.  On Modeling Assumptions in Finite Element Analysis of Stents , 2011 .

[186]  A. Quarteroni,et al.  Multiscale models of the vascular system , 2009 .

[187]  A. Quarteroni,et al.  Shape optimization for viscous flows by reduced basis methods and free‐form deformation , 2012 .

[188]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[189]  Alessandro Reali,et al.  Shape Memory Alloy: from Constitutive Modeling to Finite Element Analysis of Stent Deployment , 2010 .

[190]  Alfio Quarteroni,et al.  Multiscale modelling of the circulatory system: a preliminary analysis , 1999 .

[191]  R. Carretta McDonaldʼs Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles , 1998 .

[192]  David A. Steinman,et al.  An image-based modeling framework for patient-specific computational hemodynamics , 2008, Medical & Biological Engineering & Computing.

[193]  Fabio Nobile,et al.  Fluid-structure partitioned procedures based on Robin transmission conditions , 2008, J. Comput. Phys..

[194]  F. Auricchio,et al.  Carotid artery stenting simulation: from patient-specific images to finite element analysis. , 2011, Medical engineering & physics.

[195]  J. Weller,et al.  Numerical methods for low‐order modeling of fluid flows based on POD , 2009 .

[196]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[197]  Gianluigi Rozza,et al.  Supremizer stabilization of POD–Galerkin approximation of parametrized steady incompressible Navier–Stokes equations , 2015 .

[198]  Angelo Iollo,et al.  Reduced Order Models at Work in Aeronautics and Medicine , 2014 .

[199]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[200]  Elena S. Di Martino,et al.  Local Quantification of Wall Thickness and Intraluminal Thrombus Offer Insight into the Mechanical Properties of the Aneurysmal Aorta , 2015, Annals of Biomedical Engineering.

[201]  Pierre Badel,et al.  Patient-specific numerical simulation of stent-graft deployment: Validation on three clinical cases. , 2015, Journal of biomechanics.

[202]  Silvia Schievano,et al.  Patient-specific simulations of transcatheter aortic valve stent implantation , 2012, Medical & Biological Engineering & Computing.

[203]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[204]  C. Vergara,et al.  Flow rate defective boundary conditions in haemodynamics simulations , 2005 .

[205]  Charles Dapogny,et al.  Three-dimensional adaptive domain remeshing, implicit domain meshing, and applications to free and moving boundary problems , 2014, J. Comput. Phys..

[206]  Arthur Veldman,et al.  Proper orthogonal decomposition and low-dimensional models for driven cavity flows , 1998 .

[207]  R. Glowinski,et al.  A fictitious domain method for external incompressible viscous flow modeled by Navier-Stokes equations , 1994 .

[208]  Michele Conti,et al.  Changes in aortic pulse wave velocity of four thoracic aortic stent grafts in an ex vivo porcine model , 2017, PloS one.

[209]  Gianluigi Rozza,et al.  Model Order Reduction: a survey , 2016 .

[210]  N. Bruining,et al.  Patient-Specific Computer Modeling to Predict Aortic Regurgitation After Transcatheter Aortic Valve Replacement. , 2016, JACC. Cardiovascular interventions.

[211]  Jie Shen,et al.  An overview of projection methods for incompressible flows , 2006 .

[212]  Alessandro Reali,et al.  A locally anisotropic fluid–structure interaction remeshing strategy for thin structures with application to a hinged rigid leaflet , 2016 .

[213]  Alfio Quarteroni,et al.  Numerical Treatment of Defective Boundary Conditions for the Navier-Stokes Equations , 2002, SIAM J. Numer. Anal..

[214]  Christopher P. Cheng,et al.  Respiratory‐induced 3D deformations of the renal arteries quantified with geometric modeling during inspiration and expiration breath‐holds of magnetic resonance angiography , 2013, Journal of magnetic resonance imaging : JMRI.

[215]  C. Farhat,et al.  On the Stability of Reduced-Order Linearized Computational Fluid Dynamics Models Based on POD and Galerkin Projection: Descriptor vs Non-Descriptor Forms , 2014 .

[216]  Silvia Schievano,et al.  Computational studies of shape memory alloy behavior in biomedical applications. , 2005, Journal of biomechanical engineering.

[217]  Gianluigi Rozza,et al.  On the Application of Reduced Basis Methods to Bifurcation Problems in Incompressible Fluid Dynamics , 2017, J. Sci. Comput..

[218]  Nguyen Ngoc Cuong,et al.  Certified Real-Time Solution of Parametrized Partial Differential Equations , 2005 .

[219]  F Auricchio,et al.  Multi-objective optimization of nitinol stent design. , 2017, Medical engineering & physics.

[220]  Alfio Quarteroni,et al.  Boundary control and shape optimization for the robust design of bypass anastomoses under uncertainty , 2013 .

[221]  W. Nichols,et al.  McDonald's Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles , 1998 .

[222]  Hao-Ming Hsiao,et al.  An intriguing design concept to enhance the pulsatile fatigue life of self-expanding stents , 2013, Biomedical Microdevices.

[223]  F Auricchio,et al.  Prediction of patient-specific post-operative outcomes of TAVI procedure: The impact of the positioning strategy on valve performance. , 2016, Journal of biomechanics.

[224]  Zhilin Li The immersed interface method using a finite element formulation , 1998 .

[225]  Charles-Henri Bruneau,et al.  Enablers for robust POD models , 2009, J. Comput. Phys..

[226]  A. Patera,et al.  Certified real‐time solution of the parametrized steady incompressible Navier–Stokes equations: rigorous reduced‐basis a posteriori error bounds , 2005 .

[227]  Guido Gerig,et al.  User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability , 2006, NeuroImage.