Far-Field Microscopy of Sparse Subwavelength Objects

We present the experimental reconstruction of sub-wavelength features from the far-field of sparse optical objects. We show that it is sufficient to know that the object is sparse, and only that, and recover 100 nm features with the resolution of 30 nm, for an illuminating wavelength of \lambda=532 nm. Our technique works in real-time, requires no scanning, and can be implemented in all existing microscopes - optical and non-optical.

[1]  J. Goodman Introduction to Fourier optics , 1969 .

[2]  E. Ash,et al.  Super-resolution Aperture Scanning Microscope , 1972, Nature.

[3]  R. Gerchberg Super-resolution through Error Energy Reduction , 1974 .

[4]  G. R. Ringo,et al.  Ion source of high brightness using liquid metal , 1975 .

[5]  A. Papoulis A new algorithm in spectral analysis and band-limited extrapolation. , 1975 .

[6]  P. Prewett,et al.  CORRIGENDUM: Characteristics of a gallium liquid metal field emission ion source , 1980 .

[7]  M. Isaacson,et al.  Development of a 500 Å spatial resolution light microscope: I. light is efficiently transmitted through λ/16 diameter apertures , 1984 .

[8]  M. Teich,et al.  Fundamentals of Photonics , 1991 .

[9]  T. D. Harris,et al.  Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale , 1991, Science.

[10]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[11]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[12]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[13]  Paul R. Selvin,et al.  Myosin V Walks Hand-Over-Hand: Single Fluorophore Imaging with 1.5-nm Localization , 2003, Science.

[14]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[15]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[16]  Alessandro Salandrino,et al.  Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations , 2006 .

[17]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[18]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[19]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.

[20]  Zubin Jacob,et al.  Optical hyperlens: far-field imaging beyond the diffraction limit , 2006, SPIE NanoScience + Engineering.

[21]  I. Smolyaninov,et al.  Magnifying Superlens in the Visible Frequency Range , 2006, Science.

[22]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[23]  Michael Elad,et al.  From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images , 2009, SIAM Rev..

[24]  Nikolay I Zheludev,et al.  Super-resolution without evanescent waves. , 2008, Nano letters.

[25]  S. Hell,et al.  Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses , 2009 .

[26]  Yonina C. Eldar,et al.  Super-resolution and reconstruction of sparse sub-wavelength images. , 2009, Optics express.

[27]  Yonina C. Eldar,et al.  Super-resolution and reconstruction of sparse images carried by incoherent light. , 2010, Optics letters.

[28]  B. Culshaw,et al.  Fundamentals of Photonics , 2012 .