Redundant variables and the quality of management zones

Precision agriculture (PA) allows farmers to identify and address variations in an agriculture field. Management zones (MZs) make PA more feasible and economical. The most important method for defining MZs is a fuzzy C-means algorithm, but selecting the variable for use as the input layer in the fuzzy process is problematic. BAZZI et al. (2013) used Moran’s bivariate spatial autocorrelation statistic to identify variables that are spatially correlated with yield while employing spatial autocorrelation. BAZZI et al. (2013) proposed that all redundant variables be eliminated and that the remaining variables would be considered appropriate on the MZ generation process. Thus, the objective of this work, a study case, was to test the hypothesis that redundant variables can harm the MZ delineation process. BAZZI This work was conducted in a 19.6-ha commercial field, and 15 MZ designs were generated by a fuzzy C-means algorithm and divided into two to five classes. Each design used a different composition of variables, including copper, silt, clay, and altitude. Some combinations of these variables produced superior MZs. None of the variable combinations produced statistically better performance that the MZ generated with no redundant variables. Thus, the other redundant variables can be discredited. The design with all variables did not provide a greater separation and organization of data among MZ classes and was not recommended.

[1]  J. M. Silva,et al.  Delineation of management zones using mobile measurements of soil apparent electrical conductivity and multivariate geostatistical techniques , 2010 .

[2]  M. Clayton,et al.  Mapping Soil Test Phosphorus and Potassium for Variable‐Rate Fertilizer Application , 1994 .

[3]  P. Mielke,et al.  Permutation Methods: A Distance Function Approach , 2007 .

[4]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[5]  Margaret A. Nemeth,et al.  Applied Multivariate Methods for Data Analysis , 1998, Technometrics.

[6]  Li Xiang,et al.  Delineation and Scale Effect of Precision Agriculture Management Zones Using Yield Monitor Data Over Four Years , 2007 .

[7]  O. Pandey,et al.  An application of PCA and fuzzy C-means to delineate management zones and variability analysis of soil , 2013, Eurasian Soil Science.

[8]  A. Castrignanò,et al.  A comparison of different algorithms for the delineation of management zones , 2010, Precision Agriculture.

[9]  M. R. Neishabouri,et al.  Delineation of site specific nutrient management zones for a paddy cultivated area based on soil fertility using fuzzy clustering , 2012 .

[10]  Josse De Baerdemaeker,et al.  Key soil and topographic properties to delineate potential management classes for precision agriculture in the European loess area , 2008 .

[11]  Yan Li,et al.  Definition of Management Zones for Enhancing Cultivated Land Conservation Using Combined Spatial Data , 2013, Environmental Management.

[12]  Pierre Roudier,et al.  A technical opportunity index adapted to zone-specific management , 2011, Precision Agriculture.

[13]  J. Molin,et al.  Test procedure for variable rate fertilizer on coffee , 2010 .

[14]  R. Reich,et al.  Spatial Cross-Correlation of Bouteloua gracilis with Site Factors , 1995 .

[15]  Miguel Angel Uribe-Opazo,et al.  Management zones definition using soil chemical and physical attributes in a soybean area , 2013 .

[16]  F. Pimentel-Gomes,et al.  Estatística aplicada a experimentos agronômicos e florestais: exposição com exemplos e orientações para uso de aplicativos , 2002 .

[17]  J. R. Landis,et al.  The measurement of observer agreement for categorical data. , 1977, Biometrics.

[18]  Achim Dobermann,et al.  Creating Spatially Contiguous Yield Classes for Site‐Specific Management , 2003 .

[19]  Eduardo Godoy de Souza,et al.  Influência da distância entre passadas de colhedora equipada com monitor de colheita na precisão dos mapas de produtividade na cultura do milho , 2008 .

[20]  Daniel Marçal de Queiroz,et al.  Geração de zonas de manejo para cafeicultura empregando-se sensor SPAD e análise foliar , 2011 .

[21]  Francesco Morari,et al.  Application of multivariate geostatistics in delineating management zones within a gravelly vineyard using geo-electrical sensors , 2009 .

[22]  Z. D. Souza,et al.  O relevo na interpretação da variabilidade espacial dos teores de nutrientes em folha de citros , 2010 .

[23]  Alex B. McBratney,et al.  Application of fuzzy sets to climatic classification , 1985 .

[25]  G. T. Pereira,et al.  Variabilidade espacial de atributos do solo para adoção do sistema de agricultura de precisão na cultura de cana-de-açúcar , 2004 .

[26]  Qiang Fu,et al.  Delineating soil nutrient management zones based on fuzzy clustering optimized by PSO , 2010, Math. Comput. Model..

[27]  Lazaros S. Iliadis,et al.  An intelligent system employing an enhanced fuzzy c-means clustering model: Application in the case of forest fires , 2010 .

[28]  Wang Xinzhong,et al.  Determination of management zones for a tobacco field based on soil fertility , 2009 .

[29]  Jaume Arnó,et al.  Clustering of grape yield maps to delineate site-specific management zones. , 2011 .

[30]  Peter A. Burrough,et al.  Fuzzy mathematical methods for soil survey and land evaluation , 1989 .

[31]  Julius T. Tou,et al.  Pattern Recognition Principles , 1974 .

[32]  Giyoung Kweon,et al.  Delineation of site-specific productivity zones using soil properties and topographic attributes with a fuzzy logic system , 2012 .

[33]  Daniel Marçal de Queiroz,et al.  Definition of management zones in coffee production fields based on apparent soil electrical conductivity , 2012 .

[34]  José Paulo Molin,et al.  Establishing management zones using soil electrical conductivity and other soil properties by the fuzzy clustering technique , 2008 .

[35]  James C. Bezdek,et al.  Efficient Implementation of the Fuzzy c-Means Clustering Algorithms , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Comparison measures of maps generated by geostatistical methods , 2012 .

[37]  Alex B. McBratney,et al.  Soil pattern recognition with fuzzy-c-means : application to classification and soil-landform interrelationships , 1992 .

[38]  Miguel Angel Uribe-Opazo,et al.  Comparação de mapas de variabilidade espacial da resistência do solo à penetração construídos com e sem covariáveis usando um modelo espacial linear , 2012 .