Ferroelectrics Coupled with Unidirectional Rotation in Liquid Crystals

[1]  T. Akutagawa,et al.  Ferroelectric columnar assemblies from the bowl-to-bowl inversion of aromatic cores , 2021, Nature Communications.

[2]  T. Akutagawa Chemical Design and Physical Properties of Dynamic Molecular Assemblies , 2021 .

[3]  R. Xiong,et al.  Molecular Design Principles for Ferroelectrics: Ferroelectrochemistry. , 2020, Journal of the American Chemical Society.

[4]  M. Baroncini,et al.  Photo- and Redox-Driven Artificial Molecular Motors. , 2020, Chemical reviews.

[5]  N. Giuseppone,et al.  Design of Collective Motions from Synthetic Molecular Switches, Rotors, and Motors. , 2019, Chemical reviews.

[6]  R. Tsunashima,et al.  Ferroelectric Behavior of a Hexamethylenetetramine-Based Molecular Perovskite Structure. , 2019, Angewandte Chemie.

[7]  Peng-Fei Li,et al.  A molecular perovskite solid solution with piezoelectricity stronger than lead zirconate titanate , 2019, Science.

[8]  M. Szafrański,et al.  Structural Disorder and Molecular Dynamics in Ferroelectric Crystals [C(NH2)3]4Br2SO4 and [C(NH2)3]4Cl2SO4 , 2018, The Journal of Physical Chemistry C.

[9]  Diederik Roke,et al.  Molecular rotary motors: Unidirectional motion around double bonds , 2018, Proceedings of the National Academy of Sciences.

[10]  R. Sijbesma,et al.  Tuning the Ferroelectric Properties of Trialkylbenzene‐1,3,5‐tricarboxamide (BTA) , 2017 .

[11]  Wei-Jian Xu,et al.  A Molecular Perovskite with Switchable Coordination Bonds for High-Temperature Multiaxial Ferroelectrics. , 2017, Journal of the American Chemical Society.

[12]  T. Inabe,et al.  Directionally tunable and mechanically deformable ferroelectric crystals from rotating polar globular ionic molecules. , 2016, Nature chemistry.

[13]  Sabine Laschat,et al.  Discotic Liquid Crystals. , 2016, Chemical reviews.

[14]  T. Akutagawa,et al.  Collective In-Plane Molecular Rotator Based on Dibromoiodomesitylene π-Stacks. , 2015, Journal of the American Chemical Society.

[15]  T. Aida,et al.  Supramolecular ferroelectrics. , 2015, Nature chemistry.

[16]  Takayoshi Nakamura,et al.  The formation of organogels and helical nanofibers from simple organic salts. , 2014, Chemistry.

[17]  S. Noro,et al.  Molecular Assembly and Ferroelectric Response of Benzenecarboxamides Bearing Multiple −CONHC14H29 Chains , 2014 .

[18]  S. Ishibashi,et al.  Ionic versus Electronic Ferroelectricity in Donor–Acceptor Molecular Sequences , 2014 .

[19]  G. Giovannetti,et al.  Diisopropylammonium Bromide Is a High-Temperature Molecular Ferroelectric Crystal , 2013, Science.

[20]  N. Giuseppone,et al.  Advances in Supramolecular Electronics – From Randomly Self‐assembled Nanostructures to Addressable Self‐Organized Interconnects , 2013, Advanced materials.

[21]  C Joachim,et al.  Controlled clockwise and anticlockwise rotational switching of a molecular motor. , 2013, Nature nanotechnology.

[22]  H. Takezoe,et al.  Ferroelectric Columnar Liquid Crystal Featuring Confined Polar Groups Within Core–Shell Architecture , 2012, Science.

[23]  R. Sijbesma,et al.  Polar switching in trialkylbenzene-1,3,5-tricarboxamides. , 2012, The journal of physical chemistry. B.

[24]  R. Xiong,et al.  Metal-organic complex ferroelectrics. , 2011, Chemical Society reviews.

[25]  Michael M. Pollard,et al.  Reversing the direction in a light-driven rotary molecular motor. , 2011, Nature chemistry.

[26]  R. Sijbesma,et al.  Remnant polarization in thin films from a columnar liquid crystal. , 2010, Journal of the American Chemical Society.

[27]  E. W. Meijer,et al.  Tuning the extent of chiral amplification by temperature in a dynamic supramolecular polymer. , 2010, Journal of the American Chemical Society.

[28]  Daisuke Sato,et al.  Ferroelectricity and polarity control in solid-state flip-flop supramolecular rotators. , 2009, Nature materials.

[29]  Yoshinori Tokura,et al.  Organic ferroelectrics. , 2008, Nature materials.

[30]  E. W. Meijer,et al.  Amplification of chirality in benzene tricarboxamide helical supramolecular polymers. , 2006, Chemical communications.

[31]  M. Garcia‐Garibay,et al.  Crystalline molecular machines: a quest toward solid-state dynamics and function. , 2006, Accounts of chemical research.

[32]  Takayoshi Nakamura,et al.  Molecularly assembled nanostructures of a redox-active organogelator. , 2005, Angewandte Chemie.

[33]  M. Garcia‐Garibay,et al.  Crystalline molecular machines: encoding supramolecular dynamics into molecular structure. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Takumi Hasegawa,et al.  Gigantic Photoresponse in ¼-Filled-Band Organic Salt (EDO-TTF)2PF6 , 2005, Science.

[35]  Euan R. Kay,et al.  A Reversible Synthetic Rotary Molecular Motor , 2004, Science.

[36]  S. Takeda,et al.  Proton transfer and a dielectric phase transition in the molecular conductor (HDABCO+)2(TCNQ)3. , 2004, Journal of the American Chemical Society.

[37]  R. Astumian Thermodynamics and kinetics of a Brownian motor. , 1997, Science.

[38]  K. Hanabusa,et al.  Remarkable Viscoelasticity of Organic Solvents Containing Trialkyl-1,3,5-benzenetricarboxamides and Their Intermolecular Hydrogen Bonding , 1997 .

[39]  P. Boyer The ATP synthase--a splendid molecular machine. , 1997, Annual review of biochemistry.

[40]  Y. Shirota,et al.  Novel Low-molecular-weight Organic Gels: N,N′,N″-Tristearyltrimesamide/Organic Solvent System , 1996 .

[41]  Carolyn Pratt Brock,et al.  On the validity of Wallach's rule: on the density and stability of racemic crystals compared with their chiral counterparts , 1991 .

[42]  Y. Nakayasu,et al.  Design of novel mesomorphic compounds: N,N',N'-trialkyl-1,3,5-benzenetricarboxamides , 1988 .