Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm.

In this paper we present the absorption coefficient mu(a) and the isotropic scattering coefficient mu(s)(') for 22 human skin samples measured using a double integrating sphere apparatus in the wavelength range of 1000-2200 nm. These in vitro results show that values for mua) follow 70% of the absorption coefficient of water and values for mu(s)(') range from 3 to 16 cm(-1). From the measured optical properties, it was found that a 2% Intralipid solution provides a suitable skin tissue phantom.

[1]  Gerhard Müller,et al.  Medizinphysik: Diagnostik und Therapie mit dem Laser , 1999 .

[2]  M. Kohl,et al.  Effect of temperature on the optical properties of ex vivo human dermis and subdermis. , 1998, Physics in medicine and biology.

[3]  Michael J. McShane,et al.  Variable Selection in Multivariate Calibration of a Spectroscopic Glucose Sensor , 1997 .

[4]  M A Arnold,et al.  Near-infrared spectroscopic measurement of physiological glucose levels in variable matrices of protein and triglycerides. , 1996, Analytical chemistry.

[5]  T L Troy,et al.  Optical properties of normal and diseased breast tissues: prognosis for optical mammography. , 1996, Journal of biomedical optics.

[6]  Kevin H. Hazen,et al.  Temperature-Insensitive Near-Infrared Spectroscopic Measurement of Glucose in Aqueous Solutions , 1994 .

[7]  M A Arnold,et al.  Strategies for coupling digital filtering with partial least-squares regression: application to the determination of glucose in plasma by Fourier transform near-infrared spectroscopy. , 1993, Analytical chemistry.

[8]  A. Welch,et al.  Determining the optical properties of turbid mediaby using the adding-doubling method. , 1993, Applied optics.

[9]  J. Pickering,et al.  Double-integrating-sphere system for measuring the optical properties of tissue. , 1993, Applied optics.

[10]  H. J. van Staveren,et al.  Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm. , 1991, Applied optics.

[11]  R. Landgraf,et al.  Blood Glucose Measurement by Infrared Spectroscopy , 1989, The International journal of artificial organs.

[12]  M. Kameyama,et al.  Age-related differences in human skin collagen: solubility in solvent, susceptibility to pepsin digestion, and the spectrum of the solubilized polymeric collagen molecules. , 1982, Journal of gerontology.

[13]  C H Daly,et al.  Age-related changes in the mechanical properties of human skin. , 1979, The Journal of investigative dermatology.

[14]  P. Ray,et al.  Broadband complex refractive indices of ice and water. , 1972, Applied optics.

[15]  F. Woringer [Aging of the skin]. , 1951, Strasbourg medical.

[16]  G. Müller,et al.  Diagnostik und Therapie mit dem Laser , 1999 .

[17]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[18]  S. Jacques Origins of Tissue Optical Properties in the UVA, Visible, and NIR Regions , 1996, Advances in Optical Imaging and Photon Migration.

[19]  S L Jacques,et al.  Optical properties of intralipid: A phantom medium for light propagation studies , 1992, Lasers in surgery and medicine.

[20]  D. J. Segelstein The complex refractive index of water , 1981 .

[21]  R. Behnke,et al.  CHANGES WITH ADVANCING AGE IN THE CELL POPULATION OF HUMAN DERMIS. , 1964, Gerontologia.