Hierarchies in independence and inclusion logic with strict semantics

We study the expressive power of fragments of inclusion and independence logic defined by restricting the number k of universal quantifiers in formulas. Assuming the so-called strict semantics for these logics, we relate these fragments of inclusion and independence logic to sublogics ESO_f(k\forall) of existential second-order logic, which in turn are known to capture the complexity classes NTIME_{RAM}(n^k).

[1]  Dan Geiger,et al.  Identifying independence in bayesian networks , 1990, Networks.

[2]  Erich Grädel,et al.  Model-checking games for logics of imperfect information , 2013, Theor. Comput. Sci..

[3]  Pietro Galliani,et al.  On Dependence Logic , 2013, Johan van Benthem on Logic and Information Dynamics.

[4]  Frédéric Olive,et al.  Graph properties checkable in linear time in the number of vertices , 2004, J. Comput. Syst. Sci..

[5]  Fan Yang,et al.  Expressing Second-order Sentences in Intuitionistic Dependence Logic , 2013, Studia Logica.

[6]  Erich Grädel,et al.  Dependence and Independence , 2012, Stud Logica.

[7]  Janeen Baxter,et al.  DEPENDENCE AND INDEPENDENCE , 1995 .

[8]  Stephen A. Cook,et al.  A hierarchy for nondeterministic time complexity , 1972, J. Comput. Syst. Sci..

[9]  Merlijn Sevenster,et al.  Model-theoretic and Computational Properties of Modal Dependence Logic , 2009, J. Log. Comput..

[10]  Johannes Ebbing,et al.  Complexity of Model Checking for Modal Dependence Logic , 2011, SOFSEM.

[11]  Jouko Väänänen,et al.  From IF to BI , 2009, Synthese.

[12]  S. Shelah,et al.  Annals of Pure and Applied Logic , 1991 .

[13]  Pietro Galliani,et al.  Inclusion and exclusion dependencies in team semantics - On some logics of imperfect information , 2011, Ann. Pure Appl. Log..

[14]  Arnaud Durand,et al.  Hierarchies in Dependence Logic , 2011, TOCL.

[15]  Wilfrid Hodges,et al.  Compositional Semantics for a Language of Imperfect Information , 1997, Log. J. IGPL.

[16]  Enric Rodríguez-Carbonell,et al.  The recursive path and polynomial ordering for first-order and higher-order terms , 2013, J. Log. Comput..

[17]  Sebastian Link,et al.  Independence in Database Relations , 2013, WoLLIC.

[18]  Lauri Hella,et al.  Inclusion Logic and Fixed Point Logic , 2013, CSL.

[19]  Heribert Vollmer,et al.  Complexity Results for Modal Dependence Logic , 2010, Studia Logica.

[20]  Pietro Galliani,et al.  Hierarchies in independence logic , 2013, CSL.

[21]  Jarmo Kontinen Coherence and Computational Complexity of Quantifier-free Dependence Logic Formulas , 2013, Stud Logica.

[22]  A. Dawid Conditional Independence in Statistical Theory , 1979 .

[23]  Jonni Virtema,et al.  Complexity of Two-Variable Dependence Logic and IF-Logic , 2011, 2011 IEEE 26th Annual Symposium on Logic in Computer Science.

[24]  Miika Hannula,et al.  Axiomatizing first-order consequences in independence logic , 2013, Ann. Pure Appl. Log..

[25]  Pietro Galliani,et al.  Lottery Semantics: A Compositional Semantics for Probabilistic First-Order Logic with Imperfect Information , 2013, Studia Logica.

[26]  Xavier Caicedo,et al.  Equivalence and quantifier rules for logic with imperfect information , 2009, Log. J. IGPL.

[27]  Dan Geiger,et al.  Axioms and Algorithms for Inferences Involving Probabilistic Independence , 1991, Inf. Comput..

[28]  Pietro Galliani Epistemic Operators in Dependence Logic , 2013, Stud Logica.