A dual algorithm for a class of augmented convex models

Convex optimization models find interesting applications, especially in signal/image processing and compressive sensing. We study some augmented convex models, which are perturbed by strongly convex functions, and propose a dual gradient algorithm. The proposed algorithm includes the linearized Bregman algorithm and the singular value thresholding algorithm as special cases. Based on fundamental properties of proximal operators, we present a concise approach to establish the convergence of both primal and dual sequences, improving the results in the existing literature.

[1]  Jian-Feng Cai,et al.  Linearized Bregman iterations for compressed sensing , 2009, Math. Comput..

[2]  Wotao Yin,et al.  Analysis and Generalizations of the Linearized Bregman Method , 2010, SIAM J. Imaging Sci..

[3]  Wotao Yin,et al.  Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .

[4]  Hui Zhang,et al.  Gradient methods for convex minimization: better rates under weaker conditions , 2013, ArXiv.

[5]  Mohamed-Jalal Fadili,et al.  Model Selection with Piecewise Regular Gauges , 2013, ArXiv.

[6]  Jalal M. Fadili,et al.  Model Selection with Low Complexity Priors , 2013, 1307.2342.

[7]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[8]  Shiqian Ma,et al.  Accelerated Linearized Bregman Method , 2011, J. Sci. Comput..

[9]  A. Ruszczynski,et al.  Nonlinear Optimization , 2006 .

[10]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[11]  Emmanuel J. Candès,et al.  Adaptive Restart for Accelerated Gradient Schemes , 2012, Foundations of Computational Mathematics.

[12]  Stephen P. Boyd,et al.  Proximal Algorithms , 2013, Found. Trends Optim..

[13]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[14]  Hui Zhang,et al.  Strongly Convex Programming for Exact Matrix Completion and Robust Principal Component Analysis , 2011, ArXiv.

[15]  Jian-Feng Cai,et al.  Convergence of the linearized Bregman iteration for ℓ1-norm minimization , 2009, Math. Comput..

[16]  Hui Zhang,et al.  A lower bound guaranteeing exact matrix completion via singular value thresholding algorithm , 2011 .

[17]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[18]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[19]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[20]  M. Lai,et al.  Augmented l1 and Nuclear-Norm Models with a Globally Linearly Convergent Algorithm. Revision 1 , 2012 .

[21]  J. Moreau Fonctions convexes duales et points proximaux dans un espace hilbertien , 1962 .

[22]  Qun Wan,et al.  A short note on strongly convex programming for exact matrix completion and robust principal component analysis , 2013 .

[23]  Y. Nesterov Gradient methods for minimizing composite objective function , 2007 .