A Finite First-Order Theory of Classes

We expose a formalism that allows the expression of any theory with one or more axiom schemes using a finite number of axioms. These axioms have the property of being easily orientable into rewrite rules. This allows us to give finite first-order axiomatizations of arithmetic and real fields theory, and a presentation of arithmetic in deduction modulo that has a finite number of rewrite rules. Overall, this formalization relies on a weak calculus of explicit substitutions to provide a simple and finite framework.

[1]  Art Quaife,et al.  Automated deduction in von Neumann-Bernays-Gödel set theory , 1992, Journal of Automated Reasoning.

[2]  Claude Kirchner,et al.  HOL-λσ: an intentional first-order expression of higher-order logic , 2001, Mathematical Structures in Computer Science.

[3]  Johan G. F. Belinfante,et al.  Computer Proofs in Gödel’s Class Theory with Equational Definitions for Composite and Cross , 1999, Journal of Automated Reasoning.

[4]  Elliott Mendelson,et al.  Introduction to Mathematical Logic , 1979 .

[5]  David Aspinall,et al.  Formalising Java's Data Race Free Guarantee , 2007, TPHOLs.

[6]  Larry Wos,et al.  Set theory in first-order logic: Clauses for Gödel's axioms , 1986, Journal of Automated Reasoning.

[7]  J. Neumann Eine Axiomatisierung der Mengenlehre. , 1925 .

[8]  P. Bernays,et al.  Part II Axiomatic Set Theory , 1958 .

[9]  Claude Kirchner,et al.  Theorem Proving Modulo Revised Version , 2003 .

[10]  Norman D. Megill A Finitely Axiomatized Formalization of Predicate Calculus with Equality , 1995, Notre Dame J. Formal Log..

[11]  Lawrence C. Paulson,et al.  Set theory for verification: I. From foundations to functions , 1993, Journal of Automated Reasoning.

[12]  Philip Wadler Call-by-Value Is Dual to Call-by-Name - Reloaded , 2005, RTA.

[13]  Stéphane Vaillant,et al.  A Finite First-Order Presentation of Set Theory , 2002, TYPES.

[14]  Gilles Dowek,et al.  Arithmetic as a Theory Modulo , 2005, RTA.

[15]  Maribel Fernández,et al.  Curry-Style Types for Nominal Terms , 2006, TYPES.

[16]  Thérèse Hardin,et al.  Functional back-ends within the lambda-sigma calculus , 1996, ICFP '96.

[17]  Gilles Dowek,et al.  Cut elimination for Zermelo set theory , 2023, ArXiv.

[18]  Claude Kirchner,et al.  Theorem Proving Modulo , 2003, Journal of Automated Reasoning.

[19]  K. Gödel The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis. , 1938, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Tom Ridge,et al.  A Mechanically Verified, Sound and Complete Theorem Prover for First Order Logic , 2005, TPHOLs.

[21]  Paul Bernays,et al.  Axiomatic Set Theory , 1991 .

[22]  J. Bass Cours de mathématiques , 1959 .