Second-order cone programming approaches to static shakedown analysis in steel plasticity

The finite element method discretized static shakedown analysis of steel constructions leads to large, sparse convex optimization problems. Under the von Mises yield criterion, they lead to second-order cone programming problems, for which the most appropriate techniques are Interior Point Methods. Various approaches exploiting the specific characteristics of the shakedown problems are presented and discussed.

[1]  Henry Wolkowicz,et al.  Handbook of Semidefinite Programming , 2000 .

[2]  W. T. Koiter General theorems for elastic plastic solids , 1960 .

[3]  H. Stumpf Theoretical and computational aspects in the shakedown analysis of finite elastoplasticity , 1993 .

[4]  Knud D. Andersen,et al.  Computation of collapse states with von Mises type yield condition , 1998 .

[5]  Ernst Melan,et al.  Zur Plastizität des räumlichen Kontinuums , 1938 .

[6]  Erling D. Andersen,et al.  On implementing a primal-dual interior-point method for conic quadratic optimization , 2003, Math. Program..

[7]  Extended bounding theorems for nonlinear limit analysis , 1991 .

[8]  Rolf Mahnken,et al.  Shake-Down Analysis for Perfectly Plastic and Kinematic Hardening Materials , 1993 .

[9]  G. Strang,et al.  Geometric nonlinearity: potential energy, complementary energy, and the gap function , 1989 .

[10]  Kristian Krabbenhoft,et al.  A general non‐linear optimization algorithm for lower bound limit analysis , 2003 .

[11]  D. Weichert On the influence of geometrical nonlinearities on the shakedown of elastic-plastic structures , 1986 .

[12]  P. Panagiotopoulos Inequality Problems in Mechanics and Applications: Convex and Nonconvex Energy Functions , 1985 .

[13]  Alfredo Edmundo Huespe,et al.  A nonlinear optimization procedure for limit analysis , 1996 .

[14]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[15]  Makoto Ohsaki,et al.  Large-deformation and friction analysis of non-linear elastic cable networks by second-order cone programming , 2002 .

[16]  Giulio Maier,et al.  Shakedown theory in perfect elastoplasticity with associated and nonassociated flow-laws: A finite element, linear programming approach , 1969 .

[17]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[18]  Jos F. Sturm,et al.  Implementation of interior point methods for mixed semidefinite and second order cone optimization problems , 2002, Optim. Methods Softw..

[19]  Erwin Stein,et al.  Progress in computational analysis of inelastic structures , 1993 .

[20]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[21]  Hans D. Mittelmann,et al.  An independent benchmarking of SDP and SOCP solvers , 2003, Math. Program..

[22]  Alan R.S. Ponter,et al.  Shakedown state simulation techniques based on linear elastic solutions , 1997 .

[23]  Donald Goldfarb,et al.  Second-order cone programming , 2003, Math. Program..

[24]  Yuan-Gao Zhang,et al.  An iteration algorithm for kinematic shakedown analysis , 1995 .

[25]  Takashi Tsuchiya,et al.  Polynomial convergence of primal-dual algorithms for the second-order cone program based on the MZ-family of directions , 2000, Math. Program..

[26]  Dieter Weichert,et al.  Inelastic Analysis of Structures under Variable Loads: Theory and Engineering Applications , 2001 .

[27]  T. Tsuchiya A Convergence Analysis of the Scaling-invariant Primal-dual Path-following Algorithms for Second-ord , 1998 .

[28]  Jacov A. Kamenjarzh,et al.  Limit Analysis of Solids and Structures , 1996 .

[29]  Giulio Maier,et al.  Shakedown theorems for some classes of nonassociative hardening elastic-plastic material models , 1995 .

[30]  Knud D. Andersen,et al.  Limit Analysis with the Dual Affine Scaling Algorithm , 1995 .

[31]  G. Strang,et al.  Dual extremum principles in finite deformation elastoplastic analysis , 1989 .

[32]  Panos M. Pardalos,et al.  Topics in Semidefinite and Interior-Point Methods , 1998 .

[33]  Manfred Staat,et al.  FEM-computation of load carrying capacity of highly loaded passive components by direct methods , 1999 .

[34]  Alternative approach to shakedown as a solution of a min-max problem , 1992 .

[35]  Jan A. König,et al.  Shakedown of Elastic-Plastic Structures , 1987 .

[36]  Antonio Capsoni,et al.  A FINITE ELEMENT FORMULATION OF THE RIGID–PLASTIC LIMIT ANALYSIS PROBLEM , 1997 .

[37]  Alan R.S. Ponter,et al.  Shakedown Limits for a General Yield Condition: Implementation and Application for a Von Mises Yield Condition , 2000 .

[38]  David Lloyd Smith,et al.  Mathematical programming methods in structural plasticity , 1990 .

[39]  Dieter Weichert,et al.  Inelastic Analysis of Structures under Variable Loads , 2000 .

[40]  Takashi Tsuchiya,et al.  Optimal Magnetic Shield Design with Second-Order Cone Programming , 2002, SIAM J. Sci. Comput..

[41]  Michael L. Overton,et al.  Computing Limit Loads by Minimizing a Sum of Norms , 1998, SIAM J. Sci. Comput..

[42]  G. Maier,et al.  On Some Issues in Shakedown Analysis , 2001 .

[43]  Jose Luis Silveira,et al.  An algorithm for shakedown analysis with nonlinear yield functions , 2002 .

[44]  Manfred Staat,et al.  Numerical methods for limit and shakedown analysis : deterministic and probabilistic problems , 2003 .

[45]  Michael J. Todd,et al.  Self-Scaled Barriers and Interior-Point Methods for Convex Programming , 1997, Math. Oper. Res..

[46]  Levent Tunçel,et al.  Generalization of Primal—Dual Interior-Point Methods to Convex Optimization Problems in Conic Form , 2001, Found. Comput. Math..

[47]  Genbao Zhang,et al.  Shakedown with nonlinear strain-hardening including structural computation using finite element method , 1992 .

[48]  Michael J. Todd,et al.  Primal-Dual Interior-Point Methods for Self-Scaled Cones , 1998, SIAM J. Optim..

[49]  Giulio Maier,et al.  Shakedown analysis of elastoplastic structures: A review of recent developments , 1981 .

[50]  E. Christiansen Limit analysis of collapse states , 1996 .

[51]  Kim-Chuan Toh,et al.  Solving semidefinite-quadratic-linear programs using SDPT3 , 2003, Math. Program..

[52]  C. Polizzotto,et al.  Shakedown and steady-state responses of elastic-plastic solids in large displacements , 1996 .

[53]  Michael A. Saunders,et al.  Algorithm 583: LSQR: Sparse Linear Equations and Least Squares Problems , 1982, TOMS.