A mixed molecular modeling‐robotics approach to investigate lipase large molecular motions

Large‐scale conformational rearrangement of a lid subdomain is a key event in the interfacial activation of many lipases. We present herein a study in which the large‐scale “open‐to‐closed” movement of Burkholderia cepacia lipase lid has been simulated at the atomic level using a hybrid computational method. The two‐stage approach combines path‐planning algorithms originating from robotics and molecular mechanics methods. In the first stage, a path‐planning approach is used to compute continuous and geometrically feasible pathways between two protein conformational states. Then, an energy minimization procedure using classical molecular mechanics is applied to intermediate conformations in the path. The main advantage of such a combination of methods is that only geometrically feasible solutions are prompted for energy calculation in explicit solvent, which allows the atomic‐scale description of the transition pathway between two extreme conformations of B. cepacia lipase (BCL; open and closed states) within very short computing times (a few hours on a desktop computer). Of interest, computed pathways enable the description of intermediate conformations along the “open‐to‐closed” conformational transition of BCL lid and the identification of bottlenecks during the lid closing. Furthermore, consideration of the solvent effect when computing the transition energy profiles provides valuable information regarding the feasibility and the spontaneity of the movement under the influence of the solvent environment. This new hybrid computational method turned out to be well‐suited for investigating at an atomistic level large‐scale conformational motion and at a qualitative level, the solvent effect on the energy profiles associated with the global motion. Proteins 2011; © 2011 Wiley‐Liss, Inc.

[1]  Jürgen Pleiss,et al.  Solvent‐induced lid opening in lipases: A molecular dynamics study , 2010, Protein science : a publication of the Protein Society.

[2]  L. Mourey,et al.  Exploring the conformational states and rearrangements of Yarrowia lipolytica Lipase. , 2010, Biophysical journal.

[3]  Thierry Siméon,et al.  Simulating ligand-induced conformational changes in proteins using a mechanical disassembly method. , 2010, Physical chemistry chemical physics : PCCP.

[4]  Ying Wang,et al.  Molecular Dynamics Studies on T1 Lipase: Insight into a Double-Flap Mechanism , 2010, J. Chem. Inf. Model..

[5]  Lydia Tapia,et al.  A Motion Planning Approach to Studying Molecular Motions , 2010, Commun. Inf. Syst..

[6]  Thierry Siméon,et al.  Control of Lipase Enantioselectivity by Engineering the Substrate Binding Site and Access Channel , 2009, Chembiochem : a European journal of chemical biology.

[7]  I. André,et al.  Insights into lid movements of Burkholderia cepacia lipase inferred from molecular dynamics simulations , 2009, Proteins.

[8]  L. Kavraki,et al.  Multiscale characterization of protein conformational ensembles , 2009, Proteins.

[9]  Thierry Siméon,et al.  Encoding molecular motions in voxel maps , 2009, 2009 IEEE International Conference on Robotics and Automation.

[10]  G. Chirikjian,et al.  Iterative cluster‐NMA: A tool for generating conformational transitions in proteins , 2009, Proteins.

[11]  R. Fernández-Lafuente,et al.  Activation of Bacterial Thermoalkalophilic Lipases Is Spurred by Dramatic Structural Rearrangements* , 2009, Journal of Biological Chemistry.

[12]  J. Pleiss,et al.  Modeling of solvent-dependent conformational transitions in Burkholderia cepacia lipase , 2009, BMC Structural Biology.

[13]  C. Cambillau,et al.  Structure of human pancreatic lipase-related protein 2 with the lid in an open conformation. , 2008, Biochemistry.

[14]  Thierry Siméon,et al.  A Structure‐Controlled Investigation of Lipase Enantioselectivity by a Path‐Planning Approach , 2008, Chembiochem : a European journal of chemical biology.

[15]  Jung-Kee Lee,et al.  Structural basis for the cold adaptation of psychrophilic M37 lipase from Photobacterium lipolyticum , 2008, Proteins.

[16]  Cecilia Clementi,et al.  Coarse-grained models of protein folding: toy models or predictive tools? , 2008, Current opinion in structural biology.

[17]  T. Siméon,et al.  An NMA‐guided path planning approach for computing large‐amplitude conformational changes in proteins , 2007, Proteins.

[18]  Thierry Siméon,et al.  Disassembly Path Planning for Complex Articulated Objects , 2007, IEEE Transactions on Robotics.

[19]  A. Seshasayee,et al.  Activation of Candida rugosa lipase at alkane–aqueous interfaces: A molecular dynamics study , 2007, FEBS letters.

[20]  Jean-Claude Latombe,et al.  Using Stochastic Roadmap Simulation to Predict Experimental Quantities in Protein Folding Kinetics: Folding Rates and Phi-Values , 2007, J. Comput. Biol..

[21]  Lydia Tapia,et al.  Kinetics analysis methods for approximate folding landscapes , 2007, ISMB/ECCB.

[22]  Manfred J. Sippl,et al.  Thirty years of environmental health research--and growing. , 1996, Nucleic Acids Res..

[23]  R. Verger,et al.  Probing the opening of the pancreatic lipase lid using site-directed spin labeling and EPR spectroscopy. , 2007, Biochemistry.

[24]  Dan Halperin,et al.  Prediction and simulation of motion in pairs of transmembrane alpha-helices , 2007, Bioinform..

[25]  D. Boehr,et al.  The Dynamic Energy Landscape of Dihydrofolate Reductase Catalysis , 2006, Science.

[26]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[27]  Lydia Tapia,et al.  Simulating Protein Motions with Rigidity Analysis , 2006, RECOMB.

[28]  T. Ha,et al.  Bridging conformational dynamics and function using single-molecule spectroscopy. , 2006, Structure.

[29]  PRINCIPLES OF ROBOT MOTION, Theory, Algorithms and Implementations, by Howie Choset et al., MIT Press, 2005. xix + 603 pp., index, ISBN 0-262-03327-5, 433 references (Hb. £38.95) , 2006, Robotica.

[30]  Guang Song,et al.  Protein folding by motion planning , 2005, Physical biology.

[31]  L. Kay,et al.  Intrinsic dynamics of an enzyme underlies catalysis , 2005, Nature.

[32]  Subbulakshmi Latha Cherukuvada,et al.  Evidence of a Double-Lid Movement in Pseudomonas aeruginosa Lipase: Insights from Molecular Dynamics Simulations , 2005, PLoS Comput. Biol..

[33]  Robert L Jernigan,et al.  Rigid-cluster models of conformational transitions in macromolecular machines and assemblies. , 2005, Biophysical journal.

[34]  Thierry Siméon,et al.  BioCD : An Efficient Algorithm for Self-collision and Distance Computation between Highly Articulated Molecular Models , 2005, Robotics: Science and Systems.

[35]  J. Schrag,et al.  Mirror-image packing in enantiomer discrimination molecular basis for the enantioselectivity of B.cepacia lipase toward 2-methyl-3-phenyl-1-propanol. , 2005, Chemistry & biology.

[36]  Nancy M. Amato,et al.  Using motion planning to study RNA folding kinetics , 2004, J. Comput. Biol..

[37]  Thierry Siméon,et al.  A path planning approach for computing large-amplitude motions of flexible molecules , 2005, ISMB.

[38]  A. Salleh,et al.  Structure and dynamics of Candida rugosa lipase: the role of organic solvent , 2004, Journal of molecular modeling.

[39]  Teresa Mitchell,et al.  Engineering of an artificial glycosylation pathway blocked in core oligosaccharide assembly in the yeast Pichia pastoris: production of complex humanized glycoproteins with terminal galactose. , 2004, Glycobiology.

[40]  Georgia Hadjipavlou,et al.  Linkage between dynamics and catalysis in a thermophilic-mesophilic enzyme pair , 2004, Nature Structural &Molecular Biology.

[41]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[42]  A. Palmer,et al.  NMR characterization of the dynamics of biomacromolecules. , 2004, Chemical reviews.

[43]  Thierry Siméon,et al.  Geometric algorithms for the conformational analysis of long protein loops , 2004, J. Comput. Chem..

[44]  S. Benkovic,et al.  Single-molecule and transient kinetics investigation of the interaction of dihydrofolate reductase with NADPH and dihydrofolate. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[45]  P. Kangueane,et al.  Insights from molecular dynamics simulations into pH-dependent enantioselective hydrolysis of ibuprofen esters by Candida rugosa lipase. , 2003, Protein engineering.

[46]  J. Hermoso,et al.  Structural insights into the lipase/esterase behavior in the Candida rugosa lipases family: crystal structure of the lipase 2 isoenzyme at 1.97A resolution. , 2003, Journal of molecular biology.

[47]  R. S. Goody,et al.  Multiparameter single-molecule fluorescence spectroscopy reveals heterogeneity of HIV-1 reverse transcriptase:primer/template complexes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Martin Karplus,et al.  Catalysis and specificity in enzymes: a study of triosephosphate isomerase and comparison with methyl glyoxal synthase. , 2003, Advances in protein chemistry.

[49]  W. Eaton,et al.  Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy , 2002, Nature.

[50]  Jean-Claude Latombe,et al.  Stochastic roadmap simulation for the study of ligand-protein interactions , 2002, ECCB.

[51]  O. G. Mouritsen,et al.  Orientation and conformation of a lipase at an interface studied by molecular dynamics simulations. , 2002, Biophysical journal.

[52]  Jean-Claude Latombe,et al.  Stochastic roadmap simulation: an efficient representation and algorithm for analyzing molecular motion , 2002, RECOMB '02.

[53]  Nancy M. Amato,et al.  Using motion planning to map protein folding landscapes and analyze folding kinetics of known native structures , 2002, RECOMB '02.

[54]  Nancy M. Amato,et al.  Using motion planning to study protein folding pathways , 2001, J. Comput. Biol..

[55]  R. Bywater,et al.  Influence of a lipid interface on protein dynamics in a fungal lipase. , 2001, Biophysical journal.

[56]  S. Tomić,et al.  Complex of Burkholderia cepacia lipase with transition state analogue of 1-phenoxy-2-acetoxybutane: biocatalytic, structural and modelling study. , 2001, European journal of biochemistry.

[57]  B. Dijkstra,et al.  The Crystal Structure of Bacillus subtilis Lipase : A Minimal α/β Hydrolase Fold Enzyme , 2001 .

[58]  B. Dijkstra,et al.  The crystal structure of Bacillus subtilis lipase: a minimal alpha/beta hydrolase fold enzyme. , 2001, Journal of molecular biology.

[59]  Nancy M. Amato,et al.  Ligand binding with OBPRM and user input , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[60]  Jean-Claude Latombe,et al.  Capturing molecular energy landscapes with probabilistic conformational roadmaps , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[61]  Nancy M. Amato,et al.  Ligand Binding with OBPRM and Haptic User Input: Enhancing Automatic Motion Planning with Virtual Touch , 2000 .

[62]  Seokmin Shin,et al.  Computational Studies of Essential Dynamics of Pseudomonas cepacia Lipase , 2000, Journal of biomolecular structure & dynamics.

[63]  Steven M. LaValle,et al.  Rapidly-Exploring Random Trees: Progress and Prospects , 2000 .

[64]  R. Bywater,et al.  Computational analysis of chain flexibility and fluctuations in Rhizomucor miehei lipase. , 1999, Protein engineering.

[65]  Jean-Claude Latombe,et al.  A Motion Planning Approach to Flexible Ligand Binding , 1999, ISMB.

[66]  P. Kinnunen,et al.  Active serine involved in the stabilization of the active site loop in the Humicola lanuginosa lipase. , 1998, Biochemistry.

[67]  R. Hubbard,et al.  Conformational change in the activation of lipase: An analysis in terms of low‐frequency normal modes , 1998, Protein science : a publication of the Protein Society.

[68]  B. Dijkstra,et al.  University of Groningen Structural basis of the chiral selectivity of Pseudomonas cepacia lipase , 2017 .

[69]  Y Li,et al.  The open conformation of a Pseudomonas lipase. , 1997, Structure.

[70]  S. Suh,et al.  The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor. , 1997, Structure.

[71]  D. V. van Aalten,et al.  Essential dynamics of lipase binding sites: the effect of inhibitors of different chain length. , 1997, Protein engineering.

[72]  R. Verger ‘Interfacial activation’ of lipases: facts and artifacts , 1997 .

[73]  L. Sarda,et al.  A critical reevaluation of the phenomenon of interfacial activation. , 1997, Methods in enzymology.

[74]  D. V. van Aalten,et al.  Dynamics of proteins in different solvent systems: analysis of essential motion in lipases. , 1996, Biophysical journal.

[75]  Tirion,et al.  Large Amplitude Elastic Motions in Proteins from a Single-Parameter, Atomic Analysis. , 1996, Physical review letters.

[76]  O. Olsen,et al.  Theoretical investigation of the dynamics of the active site lid in Rhizomucor miehei lipase. , 1996, Biophysical journal.

[77]  D. Schomburg,et al.  Crystal structure of a bacterial lipase from Chromobacterium viscosum ATCC 6918 refined at 1.6 angstroms resolution. , 1996, Journal of molecular biology.

[78]  A. Klibanov,et al.  On the issue of interfacial activation of lipase in nonaqueous media , 1996, Biotechnology and bioengineering.

[79]  G J Kleywegt,et al.  Crystallographic and molecular-modeling studies of lipase B from Candida antarctica reveal a stereospecificity pocket for secondary alcohols. , 1995, Biochemistry.

[80]  H. van Tilbeurgh,et al.  The 2.46 A resolution structure of the pancreatic lipase-colipase complex inhibited by a C11 alkyl phosphonate. , 1994, Biochemistry.

[81]  J. Schrag,et al.  Analogs of reaction intermediates identify a unique substrate binding site in Candida rugosa lipase. , 1995, Biochemistry.

[82]  M. Haas,et al.  Conformational lability of lipases observed in the absence of an oil-water interface: crystallographic studies of enzymes from the fungi Humicola lanuginosa and Rhizopus delemar. , 1995, Journal of lipid research.

[83]  O. Edholm,et al.  Molecular dynamics simulations of an enzyme surrounded by vacuum, water, or a hydrophobic solvent. , 1994, Biophysical journal.

[84]  T A Jones,et al.  The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. , 1994, Structure.

[85]  Z. Derewenda,et al.  Structure and function of lipases. , 1994, Advances in protein chemistry.

[86]  M. Haas,et al.  An unusual buried polar cluster in a family of fungal lipases , 1994, Nature Structural Biology.

[87]  B Rubin,et al.  Insights into interfacial activation from an open structure of Candida rugosa lipase. , 1994, The Journal of biological chemistry.

[88]  L. Johnson,et al.  The crystal structure of triacylglycerol lipase from Pseudomonas glumae reveals a partially redundant catalytic aspartate , 1993, FEBS letters.

[89]  J. Schrag,et al.  1.8 A refined structure of the lipase from Geotrichum candidum. , 1993, Journal of molecular biology.

[90]  L. Norskov,et al.  A serine protease triad forms the catalytic centre of a triacylglycerol lipase , 1990, Nature.

[91]  T. Thuren A model for the molecular mechanism of interfacial activation of phospholipase A2 supporting the substrate theory , 1988, FEBS letters.

[92]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[93]  N. Go,et al.  Studies on protein folding, unfolding, and fluctuations by computer simulation. II. A. Three‐dimensional lattice model of lysozyme , 1978 .

[94]  J. H. Law,et al.  Catalysis by adsorbed enzymes. The hydrolysis of tripropionin by pancreatic lipase adsorbed to siliconized glass beads. , 1973, The Journal of biological chemistry.