Hydrodynamics of Bubble-Mineral Particle Collisions

Abstract This chapter surveys the hydrodynamic interactions between particles and bubbles in flotation. Some new approximate equations are given for collision efficiency. It is shown that collision processes of particles with bubbles are less effective than sliding processes because of their short duration and the strong deformation of the bubble at the collision point. Methods are suggested to estimate collision and sliding times. During contact between a particle and a bubble, the just forming thin liquid film must drain off and rupture. Therefore, possible ways of calculating film drainage time are discussed. Furthermore, possible experimental methods to determine these quantities are briefly described and recent experimental results presented.

[1]  K. Sutherland Physical chemistry of flotation; kinetics of the flotation process. , 1948, The Journal of physical and colloid chemistry.

[2]  James A. Finch,et al.  A model of particle sliding time for flotation size bubbles , 1986 .

[3]  Heinrich. Schubert,et al.  Aufbereitung fester mineralischer Rohstoffe , 1979 .

[4]  H. Schulze,et al.  Stability of thin liquid films on Langmuir-Blodgett layers on silica surfaces , 1987 .

[5]  R. K. Jain,et al.  Thinning and rupture of ring-shaped films , 1980 .

[6]  W. J. Trahar,et al.  The flotability of very fine particles — A review , 1976 .

[7]  Z. Adamczyk,et al.  Resistance coefficient of a solid sphere approaching plane and curved boundaries , 1983 .

[8]  A. Scheludko,et al.  Attachment of spherical particles to the surface of a pendant drop and the tension of the wetting perimeter , 1979 .

[9]  J. Happel,et al.  Low Reynolds number hydrodynamics , 1965 .

[10]  H. Schulze,et al.  Investigations of the collision process between particles and gas bubbles in flotation — A theoretical analysis , 1989 .

[11]  J. F. Harper,et al.  The Motion of Bubbles and Drops Through Liquids , 1972 .

[12]  Egon Matijević,et al.  Surface and Colloid Science , 1971 .

[13]  C. G. Enke Aufbereitung fester mineralischer Rohstoffe. (Bd. III). H. Schubert. 383 Seit., 284 Abb. und 29 Tab. (1972) — VEB Deutscher Verlag für Grundstoffindustrie, Leipzig — Ln.: 45,– DM , 1972 .

[14]  Martin E. Weber,et al.  Interceptional and gravitational collision efficiencies for single collectors at intermediate Reynolds numbers , 1983 .

[15]  S. Dukhin,et al.  Kinetic Theory of the Flotation of Small Particles , 1982 .

[16]  K. Sutherland,et al.  Principles of flotation , 1955 .

[17]  Graeme J. Jameson,et al.  The effect of bubble size on the rate of flotation of fine particles , 1985 .

[18]  R. Clift,et al.  Bubbles, Drops, and Particles , 1978 .

[19]  W. J. Howarth,et al.  The collision efficiency of small particles with spherical air bubbles , 1971 .

[20]  Graeme J. Jameson,et al.  Experiments on the flotation of fine particles: The influence of particle size and charge , 1976 .

[21]  Kenneth J. Ives,et al.  The scientific basis of flotation. , 1983 .

[22]  R. Lemlich,et al.  Adsorptive bubble separation techniques , 1972 .

[23]  J. Leja Surface Chemistry of Froth Flotation , 1982 .

[24]  H. Schulze Einige Untersuchungen über das Zerreißen dünner Flüssigkeitsfilme auf Feststoffoberflächen , 1975 .

[25]  脇屋 正一,et al.  J. Happel and H. Brenner: Low Reynolds Number Hydrodynamics, Prentice-Hall, 1965, 553頁, 16×23cm, 6,780円. , 1969 .

[26]  J. Leja,et al.  Physico-chemical elementary processes in flotation , 1985 .