Elemental Abundances of Kepler Objects of Interest in APOGEE DR17

The elemental abundances of planet host stars can shed light on the conditions of planet forming environments. We test if individual abundances of 130 known/candidate planet hosts in APOGEE are statistically different from those of a reference doppelgänger sample. The reference set comprises objects selected with the same T eff, logg , [Fe/H], and [Mg/H] as each Kepler Object of Interest (KOI). We predict twelve individual abundances (X = C, N, O, Na, Al, Si, Ca, Ti, V, Cr, Mn, Ni) for the KOIs and their doppelgängers using a local linear model of these four parameters, training on ASPCAP abundance measurements for a sample of field stars with high-fidelity (signal-to-noise ratio > 200) APOGEE observations. We compare element prediction residuals (model–measurement) for the two samples and find them to be indistinguishable, given a high-quality sample selection. We report median intrinsic dispersions of ∼0.038 dex and ∼0.041 dex, for the KOI and doppelgänger samples, respectively, for these elements. We conclude that the individual abundances at fixed T eff, logg , [Fe/H], and [Mg/H] are unremarkable for known planet hosts. Our results establish an upper limit on the abundance precision required to uncover any chemical signatures of planet formation in planet host stars.

[1]  Pablo Vera Alfaro,et al.  THE SEVENTEENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEYS: COMPLETE RELEASE OF MANGA, MASTAR AND APOGEE-2 DATA , 2022 .

[2]  D. Lorenzo-Oliveira,et al.  Evidence of Rocky Planet Engulfment in the Wide Binary System HIP 71726/HIP 71737 , 2021, The Astrophysical Journal.

[3]  A. Price-Whelan,et al.  The Homogeneity of the Star-forming Environment of the Milky Way Disk over Time , 2021, The Astrophysical Journal.

[4]  D. A. García-Hernández,et al.  Chemical Cartography with APOGEE: Mapping Disk Populations with a 2-process Model and Residual Abundances , 2021, The Astrophysical Journal Supplement Series.

[5]  K. Cunha,et al.  A Spectroscopic Analysis of the California-Kepler Survey Sample. II. Correlations of Stellar Metallicities with Planetary Architectures , 2021, The Astrophysical Journal.

[6]  D. Weinberg,et al.  How Many Elements Matter? , 2021, The Astrophysical Journal.

[7]  D. Huber,et al.  The Swan: Data-driven Inference of Stellar Surface Gravities for Cool Stars from Photometric Light Curves , 2020, 2011.10062.

[8]  Khadeejah A. Zamudio,et al.  The Occurrence of Rocky Habitable-zone Planets around Solar-like Stars from Kepler Data , 2020, The Astronomical Journal.

[9]  R. Beaton,et al.  Statistics of the Chemical Composition of Solar Analog Stars and Links to Planet Formation , 2020, 2010.07241.

[10]  D. A. García-Hernández,et al.  The Similarity of Abundance Ratio Trends and Nucleosynthetic Patterns in the Milky Way Disk and Bulge , 2020, The Astrophysical Journal.

[11]  M. Tsantaki,et al.  Benchmark stars, benchmark spectrographs , 2020, Astronomy & Astrophysics.

[12]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[13]  J. Matthews,et al.  Searching the Entirety of Kepler Data. II. Occurrence Rate Estimates for FGK Stars , 2020, The Astronomical Journal.

[14]  R. Booth,et al.  Fingerprints of giant planets in the composition of solar twins , 2020, 2002.11135.

[15]  Ji-lin Zhou,et al.  Occurrence and Architecture of Kepler Planetary Systems as Functions of Stellar Mass and Effective Temperature , 2020, The Astronomical Journal.

[16]  B. Wandelt,et al.  SSSpaNG! Stellar Spectra as Sparse, data-driven, Non-Gaussian processes , 2019, 1912.09498.

[17]  R. P. Butler,et al.  Cool Jupiters greatly outnumber their toasty siblings: occurrence rates from the Anglo-Australian Planet Search , 2019, Monthly Notices of the Royal Astronomical Society.

[18]  L. Spina,et al.  The Chemical Signatures of Planetary Engulfment Events in Binary Systems , 2019, The Astrophysical Journal.

[19]  M. Endl,et al.  The chemical composition of HIP 34407/HIP 34426 and other twin-star comoving pairs , 2019, Monthly Notices of the Royal Astronomical Society.

[20]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[21]  M. T. Maia,et al.  Revisiting the 16 Cygni planet host at unprecedented precision and exploring automated tools for precise abundances , 2019, Astronomy & Astrophysics.

[22]  S. Zucker,et al.  Small Planets in the Galactic Context: Host Star Kinematics, Iron, and Alpha-element Enhancement , 2019, The Astronomical Journal.

[23]  A. Santerne,et al.  The metallicity–period–mass diagram of low-mass exoplanets , 2019, Monthly Notices of the Royal Astronomical Society.

[24]  G. Micela,et al.  Connecting substellar and stellar formation: the role of the host star’s metallicity , 2019, Astronomy & Astrophysics.

[25]  D. A. García-Hernández,et al.  Chemical Abundances of Main-sequence, Turnoff, Subgiant, and Red Giant Stars from APOGEE Spectra. II. Atomic Diffusion in M67 Stars , 2019, The Astrophysical Journal.

[26]  Eric B. Ford,et al.  Occurrence Rates of Planets Orbiting FGK Stars: Combining Kepler DR25, Gaia DR2, and Bayesian Inference , 2019, The Astronomical Journal.

[27]  D. A. García-Hernández,et al.  Chemical Cartography with APOGEE: Multi-element Abundance Ratios , 2018, The Astrophysical Journal.

[28]  T. Sivarani,et al.  Properties and Occurrence Rates for Kepler Exoplanet Candidates as a Function of Host Star Metallicity from the DR25 Catalog , 2018, The Astronomical Journal.

[29]  L. Ghezzi,et al.  Retired A Stars Revisited: An Updated Giant Planet Occurrence Rate as a Function of Stellar Metallicity and Mass , 2018, The Astrophysical Journal.

[30]  Wei Zhu,et al.  About 30% of Sun-like Stars Have Kepler-like Planetary Systems: A Study of Their Intrinsic Architecture , 2018, The Astrophysical Journal.

[31]  M. Asplund,et al.  Detailed chemical compositions of the wide binary HD 80606/80607: revised stellar properties and constraints on planet formation , 2018, Astronomy & Astrophysics.

[32]  J. Bean,et al.  The Chemical Homogeneity of Sun-like Stars in the Solar Neighborhood , 2018, The Astrophysical Journal.

[33]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[34]  Howard Isaacson,et al.  The California-Kepler Survey. IV. Metal-rich Stars Host a Greater Diversity of Planets , 2017, 1712.04042.

[35]  J. Maldonado,et al.  Chemical fingerprints of hot Jupiter planet formation , 2017, 1712.01035.

[36]  J. Brinkmann,et al.  Elemental Abundances of Kepler Objects of Interest in APOGEE. I. Two Distinct Orbital Period Regimes Inferred from Host Star Iron Abundances , 2017, 1712.01198.

[37]  D. Hogg,et al.  Kronos and Krios: Evidence for Accretion of a Massive, Rocky Planetary System in a Comoving Pair of Solar-type Stars , 2017, 1709.05344.

[38]  C. Saffe,et al.  Signatures of rocky planet engulfment in HAT-P-4. Implications for chemical tagging studies , 2017, 1707.02180.

[39]  D. Apai,et al.  A SUPER-SOLAR METALLICITY FOR STARS WITH HOT ROCKY EXOPLANETS , 2016, 1609.05898.

[40]  J. Brewer,et al.  C/O AND Mg/Si RATIOS OF STARS IN THE SOLAR NEIGHBORHOOD , 2016, 1608.06286.

[41]  V. Adibekyan,et al.  ζ2 Reticuli, its debris disk, and its lonely stellar companion ζ1 Ret - Different Tc trends for different spectra , 2016, 1605.01918.

[42]  C. Saffe,et al.  Temperature condensation trend in the debris-disk binary system ζ2 Reticuli , 2016, 1602.01320.

[43]  Nicholas Troup,et al.  ASPCAP: THE APOGEE STELLAR PARAMETER AND CHEMICAL ABUNDANCES PIPELINE , 2015, 1510.07635.

[44]  S. Lucatello,et al.  The GAPS Programme with HARPS-N at TNG. X. Differential abundances in the XO-2 planet hosting binary , 2015, 1506.01614.

[45]  Joshua N. Winn,et al.  The Occurrence and Architecture of Exoplanetary Systems , 2014, 1410.4199.

[46]  M. Asplund,et al.  Chemical Signatures Of Planets: Beyond Solar-Twins , 2013, 1310.8581.

[47]  D. Fischer,et al.  REVEALING A UNIVERSAL PLANET–METALLICITY CORRELATION FOR PLANETS OF DIFFERENT SIZES AROUND SOLAR-TYPE STARS , 2013, 1310.7830.

[48]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[49]  V. Adibekyan,et al.  Exploring the α-enhancement of metal-poor planet-hosting stars. The Kepler and HARPS samples , 2012, 1209.6272.

[50]  Y. Alibert,et al.  Characterization of exoplanets from their formation - II. The planetary mass-radius relationship , 2012, 1206.3303.

[51]  J. B. Laird,et al.  An abundance of small exoplanets around stars with a wide range of metallicities , 2012, Nature.

[52]  V. Adibekyan,et al.  Overabundance of alpha-elements in exoplanet host stars , 2012, 1205.6670.

[53]  M. R. Haas,et al.  PLANET OCCURRENCE WITHIN 0.25 AU OF SOLAR-TYPE STARS FROM KEPLER , 2011, 1103.2541.

[54]  W. Benz,et al.  Extrasolar planet population synthesis. III. Formation of planets around stars of different masses , 2011, 1101.0513.

[55]  M. Asplund,et al.  Accurate abundance patterns of solar twins and analogs - Does the anomalous solar chemical composition come from planet formation? , 2009, 0911.1893.

[56]  D. Queloz,et al.  Spectroscopic parameters for 451 stars in the HARPS GTO planet search program - Stellar [Fe/H] and the frequency of exo-Neptunes , 2008, 0805.4826.

[57]  J. Valenti,et al.  The Planet-Metallicity Correlation , 2005 .

[58]  Shigeru Ida,et al.  Toward a Deterministic Model of Planetary Formation. II. The Formation and Retention of Gas Giant Planets around Stars with a Range of Metallicities , 2004, astro-ph/0408019.

[59]  Spain.,et al.  Spectroscopic [Fe/H] for 98 extra-solar planet-host stars. Exploring the probability of planet formation , 2003, astro-ph/0311541.

[60]  P. Armitage,et al.  On the Formation Timescale and Core Masses of Gas Giant Planets , 2003, astro-ph/0310191.

[61]  U. Heiter,et al.  Abundance Analysis of Planetary Host Stars. I. Differential Iron Abundances , 2003, astro-ph/0307321.

[62]  G. González The stellar metallicity—giant planet connection , 1997 .

[63]  T. Sekii,et al.  On the solar tachocline , 1997 .