A New Scheme of Using Inference Inside Evolutionary Computation Techniques to Solve CSPs

Combining inference and search produces successful schemes for solving constraint satisfaction problems. Based on this idea a general scheme which uses inference inside evolutionary computation techniques is presented. A genetic algorithm and the particle swarm optimization heuristic make use of adaptable inference levels offered by the mini-bucket elimination algorithm. Experimental results prove the efficiency of our approach in solving the Max-CSP optimization task. The inference/search trade-off is analyzed

[1]  B. Naudts,et al.  Swarm intelligence on the binary constraint satisfaction problem , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[2]  Russell C. Eberhart,et al.  Solving Constrained Nonlinear Optimization Problems with Particle Swarm Optimization , 2002 .

[3]  Russell C. Eberhart,et al.  Multiobjective optimization using dynamic neighborhood particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[4]  Zbigniew Michalewicz,et al.  Adaptation in evolutionary computation: a survey , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[5]  Mihaela Breaban,et al.  Incorporating Inference into Evolutionary Algorithms for Max-CSP , 2006, Hybrid Metaheuristics.

[6]  Paul Morris,et al.  The Breakout Method for Escaping from Local Minima , 1993, AAAI.

[7]  Elena Marchiori,et al.  A genetic local search algorithm for random binary constraint satisfaction problems , 2000, SAC '00.

[8]  A. E. Eiben,et al.  Solving constraint satisfaction problems using genetic algorithms , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[9]  Javier Larrosa,et al.  Partial Lazy Forward Checking for MAX-CSP , 1998, European Conference on Artificial Intelligence.

[10]  Zbigniew Michalewicz,et al.  A Survey of Constraint Handling Techniques in Evolutionary Computation Methods , 1995 .

[11]  Kalev Kask New Search Heuristics for Max-CSP , 2000, CP.

[12]  Barbara M. Smith,et al.  The Phase Transition and the Mushy Region in Constraint Satisfaction Problems , 1994, ECAI.

[13]  Jano I. van Hemert,et al.  Comparing evolutionary algorithms on binary constraint satisfaction problems , 2003, IEEE Trans. Evol. Comput..

[14]  James Bowen,et al.  Solving small and large scale constraint satisfaction problems using a heuristic-based microgenetic algorithm , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[15]  Jan Paredis,et al.  Co-evolutionary Constraint Satisfaction , 1994, PPSN.

[16]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[17]  Rina Dechter,et al.  Bucket elimination: A unifying framework for probabilistic inference , 1996, UAI.

[18]  Rina Dechter,et al.  Mini-buckets: A general scheme for bounded inference , 2003, JACM.

[19]  Richard J. Wallace,et al.  Directed Arc Consistency Preprocessing , 1995, Constraint Processing, Selected Papers.

[20]  Wenjun Zhang,et al.  Handling equality constraints by adaptive relaxing rule for swarm algorithms , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[21]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[22]  Rina Dechter,et al.  Constraint Processing , 1995, Lecture Notes in Computer Science.