暂无分享,去创建一个
[1] Luca Oneto,et al. Fairness in Machine Learning , 2020, INNSBDDL.
[2] M. Kearns,et al. Fairness in Criminal Justice Risk Assessments: The State of the Art , 2017, Sociological Methods & Research.
[3] Bing Liang,et al. Trust region methods for solving multiobjective optimisation , 2013, Optim. Methods Softw..
[4] Krishna P. Gummadi,et al. Fairness Constraints: Mechanisms for Fair Classification , 2015, AISTATS.
[5] Fouad Ben Abdelaziz,et al. Solution approaches for the multiobjective stochastic programming , 2012, Eur. J. Oper. Res..
[6] Pablo A. Parrilo,et al. The Convex Geometry of Linear Inverse Problems , 2010, Foundations of Computational Mathematics.
[7] Boris Polyak,et al. Acceleration of stochastic approximation by averaging , 1992 .
[8] Jörg Fliege,et al. Steepest descent methods for multicriteria optimization , 2000, Math. Methods Oper. Res..
[9] Julia Rubin,et al. Fairness Definitions Explained , 2018, 2018 IEEE/ACM International Workshop on Software Fairness (FairWare).
[10] L. F. Prudente,et al. Nonlinear Conjugate Gradient Methods for Vector Optimization , 2018, SIAM J. Optim..
[11] Antoine Soubeyran,et al. A Trust-Region Method for Unconstrained Multiobjective Problems with Applications in Satisficing Processes , 2014, J. Optim. Theory Appl..
[12] Francis Bach,et al. SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives , 2014, NIPS.
[13] Rafael Caballero,et al. Stochastic approach versus multiobjective approach for obtaining efficient solutions in stochastic multiobjective programming problems , 2002, Eur. J. Oper. Res..
[14] A. Shapiro. Monte Carlo Sampling Methods , 2003 .
[15] Yacov Y. Haimes,et al. Integrated System Identification and Optimization , 1973 .
[16] K. Chung. On a Stochastic Approximation Method , 1954 .
[17] Nathan Srebro,et al. Learning Non-Discriminatory Predictors , 2017, COLT.
[18] Chih-Jen Lin,et al. LIBSVM: A library for support vector machines , 2011, TIST.
[19] J. Désidéri. Multiple-gradient descent algorithm (MGDA) for multiobjective optimization , 2012 .
[20] Benar Fux Svaiter,et al. A quadratically convergent Newton method for vector optimization , 2014 .
[21] Suyun Liu,et al. Accuracy and Fairness Trade-offs in Machine Learning: A Stochastic Multi-Objective Approach , 2020, ArXiv.
[22] Jean-Antoine Désidéri,et al. Multiple-gradient Descent Algorithm for Pareto-Front Identification , 2014, Modeling, Simulation and Optimization for Science and Technology.
[23] J. Sacks. Asymptotic Distribution of Stochastic Approximation Procedures , 1958 .
[24] B. Svaiter,et al. A steepest descent method for vector optimization , 2005 .
[25] Ellen H. Fukuda,et al. A SURVEY ON MULTIOBJECTIVE DESCENT METHODS , 2014 .
[26] Jean-Antoine Désidéri,et al. A stochastic multiple gradient descent algorithm , 2018, Eur. J. Oper. Res..
[27] Ujjwal Maulik,et al. A Simulated Annealing-Based Multiobjective Optimization Algorithm: AMOSA , 2008, IEEE Transactions on Evolutionary Computation.
[28] Jorge Nocedal,et al. Optimization Methods for Large-Scale Machine Learning , 2016, SIAM Rev..
[29] Alexander Shapiro,et al. Stochastic Approximation approach to Stochastic Programming , 2013 .
[30] Walter J. Gutjahr,et al. Stochastic multi-objective optimization: a survey on non-scalarizing methods , 2016, Ann. Oper. Res..
[31] Kalyanmoy Deb,et al. A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..
[32] Sanghamitra Bandyopadhyay,et al. Multiobjective GAs, quantitative indices, and pattern classification , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).
[33] T. L. Saaty,et al. The computational algorithm for the parametric objective function , 1955 .
[34] Yoram Singer,et al. Pegasos: primal estimated sub-gradient solver for SVM , 2011, Math. Program..
[35] Luís N. Vicente,et al. Direct Multisearch for Multiobjective Optimization , 2011, SIAM J. Optim..
[36] Aaron Roth,et al. Equal Opportunity in Online Classification with Partial Feedback , 2019, NeurIPS.
[37] Alexander Shapiro,et al. The Sample Average Approximation Method for Stochastic Discrete Optimization , 2002, SIAM J. Optim..
[38] R. F.,et al. Mathematical Statistics , 1944, Nature.
[39] Kaisa Miettinen,et al. Nonlinear multiobjective optimization , 1998, International series in operations research and management science.
[40] Alfredo N. Iusem,et al. A Projected Gradient Method for Vector Optimization Problems , 2004, Comput. Optim. Appl..
[41] Tong Zhang,et al. Accelerating Stochastic Gradient Descent using Predictive Variance Reduction , 2013, NIPS.
[42] Matthias Ehrgott,et al. Multicriteria Optimization , 2005 .
[43] Jörg Fliege,et al. Newton's Method for Multiobjective Optimization , 2009, SIAM J. Optim..
[44] Nathan Srebro,et al. Equality of Opportunity in Supervised Learning , 2016, NIPS.
[45] Jörg Fliege,et al. Complexity of gradient descent for multiobjective optimization , 2018, Optim. Methods Softw..
[46] Toniann Pitassi,et al. Learning Fair Representations , 2013, ICML.
[47] John E. Dennis,et al. Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..
[48] Alfredo N. Iusem,et al. Proximal Methods in Vector Optimization , 2005, SIAM J. Optim..
[49] A. M. Geoffrion. Proper efficiency and the theory of vector maximization , 1968 .