Mapping a-helical induced folding within the intrinsically disordered C-terminal domain of the measles virus nucleoprotein by site-directed spin-labeling EPR spectroscopy

Mapping a-helical induced folding within the intrinsically disordered C-terminal domain of the measles virus nucleoprotein by site-directed spin-labeling EPR spectroscopy Valérie Belle,1y Sabrina Rouger,2y Stéphanie Costanzo, Elodie Liquière, Janez Strancar, Bruno Guigliarelli, André Fournel,* and Sonia Longhi* 1 Bioénergétique et Ingénierie des Protéines, UPR 9036 CNRS et Université Aix-Marseille I et II, 31 Chemin Joseph Aiguier,

[1]  V. Belle,et al.  Site‐Directed Spin Labeling EPR Spectroscopy , 2010 .

[2]  H. Dyson,et al.  Mechanism of coupled folding and binding of an intrinsically disordered protein , 2007, Nature.

[3]  A Keith Dunker,et al.  Characterization of molecular recognition features, MoRFs, and their binding partners. , 2007, Journal of proteome research.

[4]  P. Tompa,et al.  BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btm035 Structural bioinformatics Local structural disorder imparts plasticity on linear motifs , 2022 .

[5]  R. Verger,et al.  Probing the opening of the pancreatic lipase lid using site-directed spin labeling and EPR spectroscopy. , 2007, Biochemistry.

[6]  Marc S. Cortese,et al.  Analysis of molecular recognition features (MoRFs). , 2006, Journal of molecular biology.

[7]  Donald Bashford,et al.  Disordered p27Kip1 exhibits intrinsic structure resembling the Cdk2/cyclin A-bound conformation. , 2005, Journal of molecular biology.

[8]  Marc S. Cortese,et al.  Flexible nets , 2005, The FEBS journal.

[9]  B. Canard,et al.  Désordre structural au sein du complexe réplicatif du virus de la rougeole : implications fonctionnelles , 2005 .

[10]  Christopher J. Oldfield,et al.  Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling , 2005, Journal of molecular recognition : JMR.

[11]  Sonia Longhi,et al.  The intrinsically disordered C-terminal domain of the measles virus nucleoprotein interacts with the C-terminal domain of the phosphoprotein via two distinct sites and remains predominantly unfolded , 2005, Protein science : a publication of the Protein Society.

[12]  S. Longhi,et al.  Hsp72 recognizes a P binding motif in the measles virus N protein C-terminus. , 2005, Virology.

[13]  C. Rabourdin-Combe,et al.  Measles virus nucleoprotein induces cell-proliferation arrest and apoptosis through NTAIL-NR and NCORE-FcgammaRIIB1 interactions, respectively. , 2005, The Journal of general virology.

[14]  H. Dyson,et al.  Intrinsically unstructured proteins and their functions , 2005, Nature Reviews Molecular Cell Biology.

[15]  A. Fink Natively unfolded proteins. , 2005, Current opinion in structural biology.

[16]  Brian W Matthews,et al.  Structural basis for the attachment of a paramyxoviral polymerase to its template. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Linda Columbus,et al.  Mapping backbone dynamics in solution with site-directed spin labeling: GCN4-58 bZip free and bound to DNA. , 2004, Biochemistry.

[18]  István Simon,et al.  Preformed structural elements feature in partner recognition by intrinsically unstructured proteins. , 2004, Journal of molecular biology.

[19]  L. Hengst,et al.  p27 binds cyclin–CDK complexes through a sequential mechanism involving binding-induced protein folding , 2004, Nature Structural &Molecular Biology.

[20]  Sonia Longhi,et al.  Structural disorder and modular organization in Paramyxovirinae N and P. , 2003, The Journal of general virology.

[21]  C. Cambillau,et al.  Crystal Structure of the Measles Virus Phosphoprotein Domain Responsible for the Induced Folding of the C-terminal Domain of the Nucleoprotein* , 2003, Journal of Biological Chemistry.

[22]  P. Vidalain,et al.  Measles Virus (MV) Nucleoprotein Binds to a Novel Cell Surface Receptor Distinct from FcγRII via Its C-Terminal Domain: Role in MV-Induced Immunosuppression , 2003, Journal of Virology.

[23]  Sonia Longhi,et al.  The C-terminal Domain of the Measles Virus Nucleoprotein Is Intrinsically Disordered and Folds upon Binding to the C-terminal Moiety of the Phosphoprotein* , 2003, The Journal of Biological Chemistry.

[24]  David G. Karlin,et al.  Substitution of two residues in the measles virus nucleoprotein results in an impaired self-association. , 2002, Virology.

[25]  P. Tompa Intrinsically unstructured proteins. , 2002, Trends in biochemical sciences.

[26]  Charles Brooks,et al.  Identification and Characterization of a Regulatory Domain on the Carboxyl Terminus of the Measles Virus Nucleocapsid Protein , 2002, Journal of Virology.

[27]  D. Marsh,et al.  High-field electron spin resonance of spin labels in membranes. , 2002, Chemistry and physics of lipids.

[28]  Linda Columbus,et al.  A new spin on protein dynamics. , 2002, Trends in biochemical sciences.

[29]  David G. Karlin,et al.  The N-terminal domain of the phosphoprotein of Morbilliviruses belongs to the natively unfolded class of proteins. , 2002, Virology.

[30]  V. Uversky Natively unfolded proteins: A point where biology waits for physics , 2002, Protein science : a publication of the Protein Society.

[31]  H. Dyson,et al.  Coupling of folding and binding for unstructured proteins. , 2002, Current opinion in structural biology.

[32]  Joshua N Adkins,et al.  Functional consequences of preorganized helical structure in the intrinsically disordered cell-cycle inhibitor p27(Kip1). , 2001, Biochemistry.

[33]  Zoran Obradovic,et al.  The protein trinity—linking function and disorder , 2001, Nature Biotechnology.

[34]  R. Nussinov,et al.  Structured disorder and conformational selection , 2001, Proteins.

[35]  H. Kühne,et al.  Use of EPR Spectroscopy to Study Macromolecular Structure and Function , 2001, Science progress.

[36]  R. Nussinov,et al.  Protein Folding: Binding of Conformationally Fluctuating Building Blocks Via Population Selection , 2001, Critical reviews in biochemistry and molecular biology.

[37]  Benjamin A. Shoemaker,et al.  Speeding molecular recognition by using the folding funnel: the fly-casting mechanism. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Liam J. McGuffin,et al.  The PSIPRED protein structure prediction server , 2000, Bioinform..

[39]  W. Hubbell,et al.  Recent advances in site-directed spin labeling of proteins. , 1998, Current opinion in structural biology.

[40]  J. Habener,et al.  Transcriptional activator-coactivator recognition: nascent folding of a kinase-inducible transactivation domain predicts its structure on coactivator binding. , 1998, Biochemistry.

[41]  A. Gingras,et al.  4E binding proteins inhibit the translation factor eIF4E without folded structure. , 1998, Biochemistry.

[42]  C. Pace,et al.  Helix propensities are identical in proteins and peptides. , 1997, Biochemistry.

[43]  P E Wright,et al.  Structural studies of p21Waf1/Cip1/Sdi1 in the free and Cdk2-bound state: conformational disorder mediates binding diversity. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[44]  C. Altenbach,et al.  Watching proteins move using site-directed spin labeling. , 1996, Structure.

[45]  K. Hideg,et al.  Motion of spin-labeled side chains in T4 lysozyme. Correlation with protein structure and dynamics. , 1996, Biochemistry.

[46]  V. Uversky Use of fast protein size-exclusion liquid chromatography to study the unfolding of proteins which denature through the molten globule. , 1993, Biochemistry.

[47]  A. Scheid,et al.  the relationship of conformational changes in the Sendai virus nucleocapsid to proteolytic cleavage of the NP polypeptide. , 1981, Virology.

[48]  A. Scheid,et al.  Conformation of the helical nucleocapsids of paramyxoviruses and vesicular stomatitis virus: reversible coiling and uncoiling induced by changes in salt concentration. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[49]  P. Tompa,et al.  Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions. , 2008, Trends in biochemical sciences.

[50]  S. Longhi,et al.  Structural disorder within the replicative complex of measles virus: functional implications. , 2006, Virology.

[51]  Marc S. Cortese,et al.  Coupled folding and binding with alpha-helix-forming molecular recognition elements. , 2005, Biochemistry.

[52]  Vladimir N Uversky,et al.  What does it mean to be natively unfolded? , 2002, European journal of biochemistry.

[53]  J. Feix,et al.  Site-Directed Spin Labeling of Membrane Proteins and Peptide-Membrane Interactions , 2002 .

[54]  Christopher J. Oldfield,et al.  Intrinsically disordered protein. , 2001, Journal of molecular graphics & modelling.