From cudgel to scalpel: toward precise neural control with optogenetics

Optogenetics is routinely used to activate and inactivate genetically defined neuronal populations in vivo. A second optogenetic revolution will occur when spatially distributed and sparse neural assemblies can be precisely manipulated in behaving animals.

[1]  B. Zemelman,et al.  Two-photon single-cell optogenetic control of neuronal activity by sculpted light , 2010, Proceedings of the National Academy of Sciences.

[2]  Lin Tian,et al.  Functional imaging of hippocampal place cells at cellular resolution during virtual navigation , 2010, Nature Neuroscience.

[3]  K. Svoboda,et al.  Channelrhodopsin-2–assisted circuit mapping of long-range callosal projections , 2007, Nature Neuroscience.

[4]  D. Tank,et al.  Two-photon excitation of channelrhodopsin-2 at saturation , 2009, Proceedings of the National Academy of Sciences.

[5]  Sreekanth H. Chalasani,et al.  Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators , 2009, Nature Methods.

[6]  K. Deisseroth,et al.  Phasic Firing in Dopaminergic Neurons Is Sufficient for Behavioral Conditioning , 2009, Science.

[7]  E. Boyden,et al.  Multiple-Color Optical Activation, Silencing, and Desynchronization of Neural Activity, with Single-Spike Temporal Resolution , 2007, PloS one.

[8]  K. Svoboda,et al.  Myosin-dependent targeting of transmembrane proteins to neuronal dendrites , 2009, Nature Neuroscience.

[9]  Andreas Möglich,et al.  Channelrhodopsin engineering and exploration of new optogenetic tools , 2011, Nature Methods.

[10]  E. Bamberg,et al.  Channelrhodopsin-2, a directly light-gated cation-selective membrane channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[11]  E. Isacoff,et al.  Scanless two-photon excitation of channelrhodopsin-2 , 2010, Nature Methods.

[12]  Susana Q. Lima,et al.  PINP: A New Method of Tagging Neuronal Populations for Identification during In Vivo Electrophysiological Recording , 2009, PloS one.

[13]  W. Denk,et al.  Deep tissue two-photon microscopy , 2005, Nature Methods.

[14]  Mark Mayford,et al.  Localization of a Stable Neural Correlate of Associative Memory , 2007, Science.

[15]  Matthew S. Grubb,et al.  Channelrhodopsin-2 Localised to the Axon Initial Segment , 2010, PloS one.

[16]  K. Svoboda,et al.  Neural Activity in Barrel Cortex Underlying Vibrissa-Based Object Localization in Mice , 2010, Neuron.

[17]  K. Svoboda,et al.  Reverse engineering the mouse brain , 2009, Nature.

[18]  Carol A Barnes,et al.  Recent behavioral history modifies coupling between cell activity and Arc gene transcription in hippocampal CA1 neurons. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Feng Zhang,et al.  Multimodal fast optical interrogation of neural circuitry , 2007, Nature.

[20]  M. Ehlers,et al.  Rapid blue light induction of protein interactions in living cells , 2010, Nature Methods.

[21]  K. Harris,et al.  Ultrastructural Analysis of Hippocampal Neuropil from the Connectomics Perspective , 2010, Neuron.

[22]  K. Svoboda,et al.  Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice , 2008, Nature.

[23]  György Buzsáki,et al.  Neural Syntax: Cell Assemblies, Synapsembles, and Readers , 2010, Neuron.

[24]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[25]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.