Functional Architecture of an Optic Flow-Responsive Area that Drives Horizontal Eye Movements in Zebrafish

[1]  I. Thompson,et al.  Emergent Properties of the Optic Tectum Revealed by Population Analysis of Direction and Orientation Selectivity , 2013, The Journal of Neuroscience.

[2]  M. Orger,et al.  Two-photon imaging of neural population activity in zebrafish. , 2013, Methods.

[3]  Philipp J. Keller,et al.  Whole-brain functional imaging at cellular resolution using light-sheet microscopy , 2013, Nature Methods.

[4]  G. Hauptmann,et al.  Molecular characterization of prosomeric and intraprosomeric subdivisions of the embryonic zebrafish diencephalon , 2013, The Journal of comparative neurology.

[5]  Rick Dale,et al.  Assessing bimodality to detect the presence of a dual cognitive process , 2013, Behavior research methods.

[6]  Alison S. Walker,et al.  Parametric Functional Maps of Visual Inputs to the Tectum , 2012, Neuron.

[7]  Jasper Akerboom,et al.  Optimization of a GCaMP Calcium Indicator for Neural Activity Imaging , 2012, The Journal of Neuroscience.

[8]  Thomas Brox,et al.  ViBE-Z: a framework for 3D virtual colocalization analysis in zebrafish larval brains , 2012, Nature Methods.

[9]  F. Del Bene,et al.  Optogenetics: A new enlightenment age for zebrafish neurobiology , 2012, Developmental neurobiology.

[10]  Benjamin Sivyer,et al.  Direction selectivity in the retina: symmetry and asymmetry in structure and function , 2012, Nature Reviews Neuroscience.

[11]  J. Fetcho,et al.  Movement, technology and discovery in the zebrafish , 2011, Current Opinion in Neurobiology.

[12]  Claire Wyart,et al.  Let there be light: zebrafish neurobiology and the optogenetic revolution , 2011, Reviews in the neurosciences.

[13]  David W. Tank,et al.  Regression-Based Identification of Behavior-Encoding Neurons During Large-Scale Optical Imaging of Neural Activity at Cellular Resolution , 2010, Journal of neurophysiology.

[14]  Aristides B. Arrenberg,et al.  Optogenetic Localization and Genetic Perturbation of Saccade-Generating Neurons in Zebrafish , 2010, The Journal of Neuroscience.

[15]  Klaus-Peter Hoffmann,et al.  Question of reference frames: visual direction-selective neurons in the accessory optic system of goldfish. , 2009, Journal of neurophysiology.

[16]  Herwig Baier,et al.  Optical control of zebrafish behavior with halorhodopsin , 2009, Proceedings of the National Academy of Sciences.

[17]  Herwig Baier,et al.  Genetic and optical targeting of neural circuits and behavior—zebrafish in the spotlight , 2009, Current Opinion in Neurobiology.

[18]  G. Biral,et al.  The commissural transfer of the horizontal optokinetic signal in the rat: a c-Fos study , 2009, Experimental Brain Research.

[19]  K. Hoffmann,et al.  Comparative Neurobiology of the Optokinetic Reflex , 2009, Annals of the New York Academy of Sciences.

[20]  Tobias Breuninger,et al.  Eyecup scope—optical recordings of light stimulus-evoked fluorescence signals in the retina , 2009, Pflügers Archiv - European Journal of Physiology.

[21]  Kristen E. Severi,et al.  Control of visually guided behavior by distinct populations of spinal projection neurons , 2008, Nature Neuroscience.

[22]  Stephan C F Neuhauss,et al.  The optokinetic response in zebrafish and its applications. , 2008, Frontiers in bioscience : a journal and virtual library.

[23]  Klaus-Peter Hoffmann,et al.  Responses to moving visual stimuli in pretectal neurons of the small-spotted dogfish (Scyliorhinus canicula). , 2008, Journal of neurophysiology.

[24]  Shih-Chii Liu,et al.  Oculomotor Instabilities in Zebrafish Mutant belladonna: A Behavioral Model for Congenital Nystagmus Caused by Axonal Misrouting , 2006, The Journal of Neuroscience.

[25]  J. Dowling,et al.  Directional asymmetries in the optokinetic response of larval zebrafish (Danio rerio). , 2005, Zebrafish.

[26]  J. N. Kay,et al.  Forward Genetic Analysis of Visual Behavior in Zebrafish , 2005, PLoS genetics.

[27]  Stephan C F Neuhauss,et al.  Contrast sensitivity, spatial and temporal tuning of the larval zebrafish optokinetic response. , 2005, Investigative ophthalmology & visual science.

[28]  T. Raphan,et al.  Nystagmus induced by stimulation of the nucleus of the optic tract in the monkey , 1988, Experimental Brain Research.

[29]  W. Precht,et al.  Pathways mediating optokinetic responses of vestibular nucleus neurons in the rat , 1980, Pflügers Archiv.

[30]  C. Rocha-Miranda,et al.  Binocularity in the nucleus of the optic tract of the opossum , 2004, Experimental Brain Research.

[31]  K. Hoffmann,et al.  Variability in the effects of monocular deprivation on the optokinetic reflex of the non-deprived eye in the cat , 2004, Experimental Brain Research.

[32]  B. Cohen,et al.  Effects of lesions of the nucleus of the optic tract on optokinetic nystagmus and after-nystagmus in the monkey , 2004, Experimental Brain Research.

[33]  H. Gioanni,et al.  Optokinetic nystagmus in the pigeon (Columba livia) II. Role of the pretectal nucleus of the accessory optic system (AOS) , 2004, Experimental Brain Research.

[34]  Luis Puelles,et al.  Forebrain gene expression domains and the evolving prosomeric model , 2003, Trends in Neurosciences.

[35]  Herwig Baier,et al.  Visuomotor Behaviors in Larval Zebrafish after GFP-Guided Laser Ablation of the Optic Tectum , 2003, The Journal of Neuroscience.

[36]  M. Wullimann,et al.  BrdU-, neuroD (nrd)- and Hu-studies reveal unusual non-ventricular neurogenesis in the postembryonic zebrafish forebrain , 2002, Mechanisms of Development.

[37]  N. Marshall,et al.  Independent and conjugate eye movements during optokinesis in teleost fish. , 2002, The Journal of experimental biology.

[38]  K. Hoffmann,et al.  Visual direction-selective neurons in the pretectum of the rainbow trout , 2002, Brain Research Bulletin.

[39]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[40]  Matthew C Smear,et al.  Perception of Fourier and non-Fourier motion by larval zebrafish , 2000, Nature Neuroscience.

[41]  D. Wylie Binocular neurons in the nucleus lentiformis mesencephali in pigeons: responses to translational and rotational optic flowfields , 2000, Neuroscience Letters.

[42]  H Okamoto,et al.  Visualization of Cranial Motor Neurons in Live Transgenic Zebrafish Expressing Green Fluorescent Protein Under the Control of the Islet-1 Promoter/Enhancer , 2000, The Journal of Neuroscience.

[43]  C. Rocha-Miranda,et al.  Cortical and subcortical influences on the nucleus of the optic tract of the opossum , 1999, Neuroscience.

[44]  William A. Harris,et al.  Genetic Disorders of Vision Revealed by a Behavioral Screen of 400 Essential Loci in Zebrafish , 1999, The Journal of Neuroscience.

[45]  C. Rocha-Miranda,et al.  On the functional anatomy of the nucleus of the optic tract–dorsal terminal nucleus commissural connection in the opossum (Didelphis marsupialis aurita) , 1996, Neuroscience.

[46]  J B Hurley,et al.  A behavioral screen for isolating zebrafish mutants with visual system defects. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[47]  S. Easter,et al.  Development of the retinofugal projections in the embryonic and larval zebrafish (Brachydanio rerio) , 1994, The Journal of comparative neurology.

[48]  A. Reber,et al.  Horizontal optokinetic nystagmus in unilaterally enucleated pigmented rats: Role of the pretectal commissural fibers , 1991, The Journal of comparative neurology.

[49]  B J Frost,et al.  Binocular neurons in the nucleus of the basal optic root (nBOR) of the pigeon are selective for either translational or rotational visual flow , 1990, Visual Neuroscience.

[50]  J. Simpson,et al.  The accessory optic system of rabbit. II. Spatial organization of direction selectivity. , 1988, Journal of neurophysiology.

[51]  I. Kato,et al.  Role of the nucleus of the optic tract of monkeys in optokinetic nystagmus and optokinetic after-nystagmus , 1988, Brain Research.

[52]  K. Fite,et al.  Pretectal and accessory-optic visual nuclei of fish, amphibia and reptiles: theme and variations. , 1985, Brain, behavior and evolution.

[53]  H. Vanegas,et al.  Morphological aspects of the teleostean visual system: A review , 1983, Brain Research Reviews.

[54]  K. Fite,et al.  The accessory optic system of Rana pipiens: Neuroanatomical connections and intrinsic organization , 1981, The Journal of comparative neurology.

[55]  W. Precht,et al.  On the pathway mediating optokinetic responses in vestibular nuclear neurons , 1980, Neuroscience.

[56]  S. Hunt,et al.  Optokinetic nystagmus and the accessory optic system of pigeon and turtle. , 1979, Brain, behavior and evolution.

[57]  K. Fite,et al.  Specific projection of displaced retinal ganglion cells upon the accessory optic system in the pigeon (Columbia livia). , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[58]  H Collewijn,et al.  Oculomotor areas in the rabbits midbrain and pretectum. , 1975, Journal of neurobiology.

[59]  F. Scalia The termination of retinal axons in the pretectal region of mammals , 1972, The Journal of comparative neurology.

[60]  H. Barlow,et al.  Selective Sensitivity to Direction of Movement in Ganglion Cells of the Rabbit Retina , 1963, Science.