Shape correspondence using anisotropic Chebyshev spectral CNNs

Establishing correspondence between shapes is a very important and active research topic in many domains. Due to the powerful ability of deep learning on geometric data, lots of attractive results have been achieved by convolutional neural networks (CNNs). In this paper, we propose a novel architecture for shape correspondence, termed Anisotropic Chebyshev spectral CNNs (ACSCNNs), based on a new extension of the manifold convolution operator. The extended convolution operators aggregate the local features of signals by a set of oriented kernels around each point, which allows to much more comprehensively capture the intrinsic signal information. Rather than using fixed oriented kernels in the spatial domain in previous CNNs, in our framework, the kernels are learned by spectral filtering, based on the eigen-decompositions of multiple Anisotropic Laplace-Beltrami Operators. To reduce the computational complexity, we employ an explicit expansion of the Chebyshev polynomial basis to represent the spectral filters whose expansion coefficients are trainable. Through the benchmark experiments of shape correspondence, our architecture is demonstrated to be efficient and be able to provide better than the state-of-the-art results in several datasets even if using constant functions as inputs.

[1]  Daniel Cremers,et al.  Anisotropic Diffusion Descriptors , 2016, Comput. Graph. Forum.

[2]  M. Bronstein,et al.  SHREC’16: Partial Matching of Deformable Shapes , 2016 .

[3]  Maks Ovsjanikov,et al.  Functional maps , 2012, ACM Trans. Graph..

[4]  Federico Tombari,et al.  SHOT: Unique signatures of histograms for surface and texture description , 2014, Comput. Vis. Image Underst..

[5]  Jianxiong Xiao,et al.  3D ShapeNets: A deep representation for volumetric shapes , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Maks Ovsjanikov,et al.  Improved Functional Mappings via Product Preservation , 2018, Comput. Graph. Forum.

[7]  Daniel Cremers,et al.  Partial Matching of Deformable Shapes , 2016, 3DOR@Eurographics.

[8]  Daniel Cremers,et al.  Partial Functional Correspondence , 2017 .

[9]  U. Feige,et al.  Spectral Graph Theory , 2015 .

[10]  Qi-Xing Huang,et al.  Dense Human Body Correspondences Using Convolutional Networks , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Joan Bruna,et al.  Spectral Networks and Locally Connected Networks on Graphs , 2013, ICLR.

[12]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[13]  Radu Horaud,et al.  Articulated shape matching using Laplacian eigenfunctions and unsupervised point registration , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  Joan Bruna,et al.  Deep Convolutional Networks on Graph-Structured Data , 2015, ArXiv.

[15]  Vladlen Koltun,et al.  Robust Nonrigid Registration by Convex Optimization , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[16]  Daniel Cremers,et al.  Efficient Deformable Shape Correspondence via Kernel Matching , 2017, 2017 International Conference on 3D Vision (3DV).

[17]  Ron Kimmel,et al.  Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Vladimir Kolmogorov,et al.  Feature Correspondence Via Graph Matching: Models and Global Optimization , 2008, ECCV.

[19]  Sebastian Thrun,et al.  SCAPE: shape completion and animation of people , 2005, SIGGRAPH '05.

[20]  Xavier Bresson,et al.  CayleyNets: Graph Convolutional Neural Networks With Complex Rational Spectral Filters , 2017, IEEE Transactions on Signal Processing.

[21]  Pierre Vandergheynst,et al.  Geodesic Convolutional Neural Networks on Riemannian Manifolds , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[22]  Jing Ren,et al.  ZoomOut: Spectral Upsampling for Efficient Shape Correspondence , 2019, ACM Trans. Graph..

[23]  Bruno Lévy,et al.  Spectral Geometry Processing with Manifold Harmonics , 2008, Comput. Graph. Forum.

[24]  Vladimir G. Kim,et al.  Blended intrinsic maps , 2011, ACM Trans. Graph..

[25]  Maks Ovsjanikov,et al.  Discrete Time Evolution Process Descriptor for Shape Analysis and Matching , 2018, ACM Trans. Graph..

[26]  Jing Ren,et al.  Continuous and orientation-preserving correspondences via functional maps , 2018, ACM Trans. Graph..

[27]  Pierre Vandergheynst,et al.  Learning class‐specific descriptors for deformable shapes using localized spectral convolutional networks , 2015, SGP '15.

[28]  A. Bronstein,et al.  Learning Spectral Descriptors for Deformable Shape Correspondence , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Michael J. Black,et al.  FAUST: Dataset and Evaluation for 3D Mesh Registration , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[30]  Leonidas J. Guibas,et al.  Volumetric and Multi-view CNNs for Object Classification on 3D Data , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[31]  Daniel Cremers,et al.  Anisotropic Laplace-Beltrami Operators for Shape Analysis , 2014, ECCV Workshops.

[32]  Iasonas Kokkinos,et al.  Intrinsic shape context descriptors for deformable shapes , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[33]  Daniel Cremers,et al.  Matching of Deformable Shapes with Topological Noise , 2016, 3DOR@Eurographics.

[34]  Pierre Vandergheynst,et al.  Wavelets on Graphs via Spectral Graph Theory , 2009, ArXiv.

[35]  Pierre Vandergheynst,et al.  Geometric Deep Learning: Going beyond Euclidean data , 2016, IEEE Signal Process. Mag..

[36]  Pascal Frossard,et al.  The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains , 2012, IEEE Signal Processing Magazine.

[37]  Pierre Vandergheynst,et al.  Vertex-Frequency Analysis on Graphs , 2013, ArXiv.

[38]  Jonathan Masci,et al.  Learning shape correspondence with anisotropic convolutional neural networks , 2016, NIPS.

[39]  Raif M. Rustamov,et al.  Laplace-Beltrami eigenfunctions for deformation invariant shape representation , 2007 .

[40]  Abd El Rahman Shabayek,et al.  Deep Learning Advances on Different 3D Data Representations: A Survey , 2018, ArXiv.

[41]  M. Bronstein,et al.  SHREC’16: Matching of Deformable Shapes with Topological Noise , 2016 .

[42]  Heinrich Müller,et al.  SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[43]  Ann B. Lee,et al.  Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Daniel Cremers,et al.  The wave kernel signature: A quantum mechanical approach to shape analysis , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[45]  Facundo Mémoli,et al.  Gromov–Wasserstein Distances and the Metric Approach to Object Matching , 2011, Found. Comput. Math..

[46]  Johannes Wallner,et al.  Integral invariants for robust geometry processing , 2009, Comput. Aided Geom. Des..

[47]  Guillermo Sapiro,et al.  A Gromov-Hausdorff Framework with Diffusion Geometry for Topologically-Robust Non-rigid Shape Matching , 2010, International Journal of Computer Vision.

[48]  Ron Kimmel,et al.  On Bending Invariant Signatures for Surfaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  Max Welling,et al.  Semi-Supervised Classification with Graph Convolutional Networks , 2016, ICLR.

[50]  Jonathan Masci,et al.  Geometric Deep Learning on Graphs and Manifolds Using Mixture Model CNNs , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[51]  Daniel Cremers,et al.  Product Manifold Filter: Non-rigid Shape Correspondence via Kernel Density Estimation in the Product Space , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[52]  Marcel Campen,et al.  A Simple Approach to Intrinsic Correspondence Learning on Unstructured 3D Meshes , 2018, ECCV Workshops.

[53]  Ieee Xplore,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence Information for Authors , 2022, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[54]  Xavier Bresson,et al.  Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering , 2016, NIPS.

[55]  Leonidas J. Guibas,et al.  Soft Maps Between Surfaces , 2012, Comput. Graph. Forum.